

Rockwell Automation

FLEX I/O

 OverviewFLEX I/0 offers:
FLEX I/O complements all of our processor platforms and acts as local I/0 for FlexLogix controllers, creating a tightly integrated control and I/O solution.

Flexible, low-cost, modular I/O for distributed applications. FLEX I/O offers all the functions of larger, rack-based I/0 without the space requirements.
Independently select the I/0, termination style, and network to meet your application needs.

Two separate connection terminals for field power let you daisy-chain power connections to adjacent terminal bases.

One adapter communicates with up to eight I/O modules. Allows connection to:

- 256 digital input/output points, or
- 96 analog input/output points, or
- mix of I/O to meet your needs.

Modularity of FLEX I/O system provides choice of network and ease of expansion.
The wiring terminations are done almost entirely on the terminal base.
Terminal base termination selection includes screw-clamp, spring-clamp, and cage-clamp to wire directly to 2 -, 3 -, or 4 -wire devices. Additional options of D-shell, knife disconnect, and fused are available.

Adjustable keyswitch prevents incorrect module insertion into a preconfigured terminal base.

Terminal bases can be exchanged without moving other bases in your system.

If desired, connect individual power supplies to each base to isolate modules.
Plug the I/O module into the terminal base to connect the I/O bus and field devices.

Remove and insert modules under power. No direct wiring to the module enables you to change modules without disturbing field wiring or system power.

Mix and match I/O modules. Wide variety of digital, analog, and specialty modules.
Conformal coating available in select FLEX I/O products.
Each FLEX I/O system contains at least one adapter, terminal base, and I/O module. You can power the system with a FLEX power supply (1794-PS13 or -PS3) or any other compatible power source. Use the terminal block on the terminal base to wire your field devices directly. Wiring directly saves you:

- installation and testing time
- multiple, long wiring runs and external terminal blocks
- control cabinet panel space

FLEX I/O provides additional savings if system problems develop. Combining your field-wiring terminations and the I/O interface into the same location saves you time and money by making your system easier to maintain and troubleshoot. Additionally, the full-featured FLEX I/O system lets you, in non-hazardous location, remove and insert modules under backplane power without disrupting your system.

Your FLEX I/O system can communicate on EtherNet/IP, ControlNet, DeviceNet, and many other open networks including, but not limited, to Remote I/O, PROFIBUS DP, and Interbus-S. Adapters and other components are available for adding to your system as your specific application requirements change.

FLEX I/O General Specifications

Conformal Coated Flex I/O

The following specifications apply to all FLEX I/O adapters, modules, and terminal bases. For all other specifications, refer to the specific product catalog number sections in this selection guide.

Operating Temperature	$0 \ldots 55^{\circ} \mathrm{C}\left(32 \ldots 131{ }^{\circ} \mathrm{F}\right)$
Non-Operating Temperature	$-40 \ldots 85^{\circ} \mathrm{C}\left(-40 \ldots 185^{\circ} \mathrm{F}\right)$
Relative Humidity	5...95\% non-condensing
Shock, Operating\&**	30 g peak acceleration, 11($\pm 1) \mathrm{ms}$ pulse width*
Shock, Non-Operating\&	50 g peak acceleration, $11(\pm 1) \mathrm{ms}$ pulse width
Vibration	Tested $5 \mathrm{~g} @ 10 \ldots 500 \mathrm{~Hz}$ per IEC 68-2-6䋣
Wire Size	22...12 AWG ($0.34 \mathrm{~mm}^{2} \ldots 2.5 \mathrm{~mm}^{2}$) stranded copper wire rated at $75^{\circ} \mathrm{C}$ or higher $3 / 64$ in $(1.2 \mathrm{~mm})$ insulation max. 鋉
Certifications \ddagger	UL Listed Industrial Control Equipment UL Listed for Class I, Division 2 Groups A, B, C, D Hazardous Locations CE Marked for all applicable directives CE / ATEXT CSA Certified Process Control Equipment for Class I, Division 2 Group A, B, C, D Hazardous Locations C-Tick Marked for all applicable acts Marine Certification SIL 2 Certification ODVA ControlNet

* 1794-OW8 $=12 \mathrm{~g}$ peak acceleration, $11(\pm 1) \mathrm{ms}$ pulse width.
* 1794-OW8 = Tested 2 g @ 10... 500 Hz per IEC 68-2-6.
\ddagger When product is marked.
§See the CE Marking - Declaration of Conformity (DoC) web site for details and a list of certified products.
* See the Certification for Marine and Off-shore Applications web site for details and a list of certified products.

See the SIL 2 web site for details and a list of certified products.
$\mathscr{H} T o$ maintain these specifications, you must use DIN Rail locks.
+For all other specifications including environmetal, refer to the product sections in this Selection Guide.
Selected products in the FLEX I/O product line are available conformally coated as standard, stocked product. Catalog numbers of conformally coated product will include the designation " K " in the last position before the series identifier.

For example: A 1794 IB16/A Module with conformal coating would have the catalog number 1794 IB16K/A.

FLEX I/O's Conformal Coating meets or exceeds the following standards:

- ANSI / ISA-S71.04-1985; Class G1, G2 and G3 Environments
- CEI IEC 6065A-4; Class 1 and 2 Environments
- UL 746E
- MIL-1-46058C to ASTM-G21; (Tropicalization and fungicide)

These standards specify common emissions and classify their concentration levels in a number of industrial processes. Just a few of the common reactive agents A-B's Conformal Coating protects against are:

H2S - Hydrogen sulfide
SO2, SO3 - Sulfur dioxide
CnHn - Hydrocarbons
NOX - Oxides of nitrogen
CI2 - Wet Chlorine / Dry Chlorine
NH3 - Ammonia
The following is a list of the conformally coated FLEX I/O products available:

- 1794-ACN15
- 1794-ACNR15
- 1794-ADN
- 1794-ASB
- 1794-IE8
- 1794-IB16
- 1794-IRT8
- 1794-IJ2
- 1794-0B16P
- 1794-0E4
- 1794-OW8
- 1794-TB3
- 1794-TB3G
- 1794-TBN
- 1794-IA8
- 1794-0A8
- 1794-0B8EP

Specifying a FLEX I/O System

Follow these steps as you specify your FLEX I/O system:

\checkmark	Step	See Page	
	1 Select a communication adapter Choose the network for your operating system.	NetLinx Architecture Select a Network	7
	- location of the device - your application - number of points needed - number of points available per module - number of modules Or use Integrated Architecture Builder available free at www.ab.com/logix/iab.	Digital Analog Counter	$\begin{aligned} & 16 \\ & 36 \\ & 57 \end{aligned}$
	3 Select a terminal base Choose an appropriate terminal base for your modules.	Cross Reference Specifications Wiring Diagrams	$\begin{aligned} & \hline 67 \\ & 69 \\ & 70 \end{aligned}$
	4 Select power supplies and ensure sufficient power for the communication adapter and modules If power consumption exceeds the maximum for a single power supply, install additional power supplies.	Requirements and Sizing	81
	5 Determine mounting requirements Determine whether to panel mount or DIN Rail mount the FLEX I/O system and at what orientation (horizontal or vertical).	Mounting Extender Cables Mounting Kit DIN-Rail Locks Label Kit	$\begin{aligned} & \hline 82 \\ & 83 \\ & 84 \\ & 84 \\ & 84 \end{aligned}$
	6 Select software Based on the system design, determine the software products you need to configure and program your application.	Select Software RSLogix 5 Software RSLogix 500 Software RSLogix 5000 Software Network Configuration RSWire Software ABECAD Software	$\begin{aligned} & 85 \\ & 86 \\ & 86 \\ & 86 \\ & 87 \\ & 88 \\ & 88 \end{aligned}$

Step 2 -Select:

- I/O modules

Selecting FLEX I/O Modules

The FLEX I/O module plugs into the terminal base, connecting to the I/O bus and field devices. Since there is no direct wiring to the I/O module, you can remove and insert modules under backplane power, enabling you to change modules without disturbing field wiring, other I/O modules, or FLEX backplane power. This eliminates costly downtime and the inefficiencies of restarting a system.

The choices and flexibility you have with I/O types range from digital and analog to temperature and motion control. FLEX I/O allows you to use as many as eight terminal bases per adapter which can provide a maximum of 256 digital I/O points or 96 analog channels per adapter. You can mix and match digital and analog I/O with mounting and wiring options, supplying you with a successful distributed system solution.

This flexibility gives you the following choices of I/O signal types:

- Digital: ac and dc voltage signals
- Analog: current or voltage
- Relay: normally open, 2 A capability
- Protected outputs: non-latching, latching, and with diagnostics
- Temperature: thermocouple or RTD
- Motion: high-speed counters, flow metering, and totalization
- Combo modules: combination of input and output capability
- Intrinsic Safety (IS): use FLEX Ex I/O in hazardous areas to connect to field devices

Digital I/O Modules

Digital I/O modules interface with field devices such as:

- pushbutton and limit switches
- on/off actuators such as motor starters, pilot lights, and annunciators
- relay contacts

Features

- Modules are available in different densities ranging from 8 to 32 points.
- Digital I/O modules cover a wide electrical range:
- 120V ac: Input/Output and Isolated Input/Output, 8 and 16 point
-220 V ac: Input/Output, 8 point
- 24 V dc: Input/Output/Combination, Sink/Source, Protected, Electronically Fused, Diagnostic, 8, 16, and 32 point
- 48 V dc: Sink Input/Source Output, 16 point
- Relay: Sink/Source, 8 point
- Isolated inputs and outputs can be used in applications such as motor control centers where individual control transformers are used.
- Protected outputs (P) have electronic protection which acts to shut the output down in reaction to a short circuit, overload, or over-temperature condition. Recovery from shutdown is automatic upon removal of the output fault. No fault status is provided to the processor.
- Electronic Fused (EP) module acts to open the output when a fault occurs. The "fuse" can be reset by operating a pushbutton, via software, or by cycling the input power. Fault status is provided to the processor.
- Diagnostic (D) modules detect, indicate, and report to the processor the following faults:
- open input or output field devices or wiring
- shorted output field devices
- shorted input or output wiring
- reverse polarity of user supply wiring
- Selectable input filter times from <1 to 60 ms .
- LED for each channel indicating status of:
- corresponding input device
- output signal

Digital I／O Module Summary

Cat．No．	Description	Number of Inputs	Number of Outputs	Terminal Base Unit
AC Modules				
1794－IA8	FLEX I／0 120V ac 8 Input Module	8		1794-TBN, 1794-TB2, 1794-TB3, 1794-TB3S, 1794-TBKD*.
1794－IA8I	FLEX I／0 120V ac 8 Isolated Input Module	8	－	1794－TBN，1794－TB2，1794－TB3，1794－TB3S， 1794－TBKD桼
1794－IA16	FLEX I／O 120 V ac 16 Input Module	16		1794－TB3，1794－TB3S，1794－TBN＊＊＊
1794－IM8	FLEX I／0 220V ac 8 Input Module	8		1794－TBN＊
1794－0A8	FLEX I／O 120V ac 8 Output Module		8	1794－TBNF，1794－TB2，1794－TB3，1794－TB3S， 1794－TBN，1794－TBKD桼
1794－OA8I	FLEX I／0 120V ac 8 Isolated Output Module	－	8	1794－TBNF，1794－TB2，1794－TB3，1794－TB3S， 1794－TBN，1794－TBKD桼
1794－0A16	FLEX I／O 120V ac 16 Output Module		16	$\begin{aligned} & \text { 1794-TB3, 1794-TB2, 1794-TB3S, 1794-TBN, } \\ & \text { 1794-TBKD薬§ } \end{aligned}$
1794－0M8	FLEX I／O 220V ac 8 Output Module		8	1794－TBNF，1794－TBN藤
DC Modules				
1794－IB8	FLEX I／0 24V dc 8 Sink Input Module	8		1794－TB3，1794－TB3S槹
1794－IB16	FLEX I／O 24V dc 16 Sink Input Module	16		1794－TB3，1794－TB3S䍗
1794－IB16D	FLEX I／O 24 V dc 16 channel digital input module with diagnostics	16	－	1794－TB32，1794－TB32S粯
1794－IB32	FLEX I／O 24V dc 32 Input Module	32		1794－TB32，1794－TB32S粯
1794－IV16	FLEX I／O 24V dc 16 Source Input Module	16		1794－TB2，1794－TB3，1794－TB3S，1794－TBKD ${ }^{\text {＊}}$
1794－IB10xOB6	FLEX I／O 24V dc 10 Input／6 2 A Output Combo Module	10	6	1794－TB3，1794－TB3S槹
1794－IB16X0B16P	FLEX I／O 24V dc 16 Input／16 Protected Output Module	16	16	1794－TB32，TB32S楽
1794－IC16	FLEX I／0 48V dc 16 Sink Input Module	16	－	1794－TB3，1794－TB3S䇣
1794－0B8	FLEX I／O 24V dc 8 Source Output Module		8	1794－TB2，1794－TB3，1794－TB3S，1794－TBKD＊
1794－OB8EP	FLEX I／O 24V dc Electronically Protected 8 Output Module		8	$\begin{aligned} & \text { 1794-TB3, 1794-TB2, 1794-TB3S, 1794-TBN, } \\ & \text { 1794-TBKD } \end{aligned}$
1794－OB16	FLEX I／0 24V dc 16 Source Output Module		16	1794－TB2，1794－TB3，1794－TB3S，1794－TBKD ${ }_{\text {咸 }}$
1794－0B16D	FLEX I／0 24 V dc 16 channel digital output module with diagnostics		16	1794－TB3，1794－TB3S，1794－TBKD ${ }_{\text {畨 }}$
1794－0B16P	FLEX I／O 24V dc 16 Protected Source Output Module		16	1794－TB2，1794－TB3，1794－TB3S，1794－TBKD ${ }_{\text {人 }}$
1794－OB32P	FLEX I／0 24V dc 32 Protected Source Output Module	－	32	1794－TB32，1794－TB32S薬
1794－0V16	FLEX I／0 24V dc 16 Sink Output Module		16	1794－TB3，1794－TB3S笽
1794－0V16P	FLEX I／0 24V dc 16 Protected Sink Output Module		16	1794－TB3，1794－TB3S秥
1794－0C16	FLEX I／0 48V dc 16 Source Output Module		16	1794－TB3，1794－TB2，1794－TB3S，1794－TBKD ${ }^{\text {＊}}$
Relay Modules				
1794－0W8	FLEX I／O 24V dc 8 Relay Sink／Source Output Module		8	1794－TBNF，1794－TBN，1794－TB2，1794－TB3， 1794－TB3S， 1794 －TBKD稀

[^0]＊Recommended terminal base is in bold text．
\ddagger Auxiliary terminal strips are required when using the 1794－TBN for the 1794－IA16 and 1794－IA16．
§Auxiliary terminal strips are required when using the 1794－TBN for the 1794－OA16 and 1794－IA16．

Conformal coated versions of standard modules have the letter K in the last position of the catalog number, before the series designation.

	Conformal Coated Description
1794-IA8K	ANSI / ISA-S71.04-1985, Class G1, G2, and G3 environments CEI IEC 6065A-4 Class 1 and 2 environments UL 746E
1794-IB16K	
1794-OA8K	
1794-OB16PK	
1794-OB8EPK	ANSI / ISA-S71.04-1985, Class G1, G2, and G3 environments CEI IEC 6065A-4 Class 1 and 2 environments UL 746E
1794-ACN15	-
1794-ACNR15	-
1794-ADN	-
1794-ASB	-
1794-IE8	-
1794-IB16	-
1794-IRT8	-
1794-OB16	-
1794-OE4	-
1794-OW8	-
1794-TB3	-
1794-TB3G	-
1794-TBN	-
1794-IA8	-
1794-OA8	-
1794-OB8EP	-
1794-IJ2	-

Tnput Filter Times - AC Modules

Filter Times for Inputs	Maximum Times (ms)			
	OFF to ON		ON to OFF	
	1794-IA8, -IA8I	1794-IA16, -IM8	1794-IA8, -IA8I	1794-IA16, -IM8
Filter Time 0 (default)	8.4*	7.5	26.4 楽	26.5
1	8.6	8	26.6	27
2	9	9	27	28
3	10	10	28	29
4	12	12	30	31
5	16	16	34	35
6	24	24.5	42	44
7	40	42	58	60.5

*OFF to ON filter is 8 ms .
*ON to OFF filter is 26 ms .

Selecting Input Filter Times for Digital Modules

Input filter times can be set to the following values (EtherNet I/P, ControlNet, and DeviceNet only):

Tnput Filter Times - AC Modules

Filter Times for Inputs	Maximum Times (ms)			
	OFF to ON	ON to OFF		
	1794-IA16, -IM8	1794-IA8, -IA8I	1794-IA16, -IM8	
Filter Time 0 (default)	$8.4 *$	7.5	26.4	26.5
1	8.6	8	26.6	27
2	9	9	27	28
3	10	10	28	29
4	12	12	30	31
5	16	16	34	35
6	24	24.5	42	44
7	40	42	58	60.5

*OFF to ON filter is 8 ms .
*来 * . to OFF filter is 26 ms .

Tnput Filter Times - DC Modules	
	Maximum Times (ms)
	OFF to ON and ON to OFF
Filter Time 0 (default)	1794-IB8, -IB16, -IB32, -IV16, -IC16, -IB10X0B6, -IB16XOB16P
1	0.2
2	1
3	2
4	4
5	8
6	16
7	32

Derating Curve

The area within the curve represents the safe operating range for the module under various conditions of user supplied 220V ac supply voltages and ambient temperatures.
$\square=$ All mounting positions (including normal horizontal, vertical, inverted horizontal) safe operating range.

FLEX I／O Digital AC Input Modules

1794－IA8 accepts 8 inputs from 120 V ac field input devices that can have off－state leakage as high as 2.5 mA ．For noisy input signals，all input modules can be programmed with filter times from $10 \ldots 60 \mathrm{~ms}$ ．

1794－IA8I provides 8 isolated inputs with the same specifications as the 1794－IA8．
1794－IA16 is the 16 input version of the 1794－IA8．
$\mathbf{1 7 9 4}$－IM8 is the 220 V ac version of the 1794 －IA8．

	1794－IA8	1794－IA81	1794－IA16	1794－IV8
Voltage，On－State Input，Nom．	120 V ac	120 V ac ，isolated	120 V ac	220 Vac
Terminal Base Unit	$\begin{aligned} & \text { 1794-TBN, 1794-TB2, 1794-TB3, 1794- } \\ & \text { TB3S, 1794-TBKD*. } \end{aligned}$	1794-TBN, 1794-TB2, 1794-TB3, 1794- TB3S，1794－TBKD䔝	1794－TB3，1794－TB3S，1794－TBN敉§	1794－TBN葆
Current，On－State Input，Nom．	12 mA ＠120V ac， 60 Hz	12 mA ＠120V ac， 60 Hz	12 mA ＠120V ac， 60 Hz	10 mA ＠220V ac， 60 Hz
Input Impedance，Nom．	$10.6 \mathrm{k} \Omega$	$10.6 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$22.3 \mathrm{k} \Omega$
Voltage，On－State Input，Min．	65 V ac	65 V ac	74 V ac	159 a ac
Voltage，Off－State Input，Max．	43 V ac	43 V ac	20 Vac	40 V ac
Current，On－State Input，Min．\ddagger	$7.1 \mathrm{mA*}>_{\text {d }}+$＊	$7.1 \mathrm{~mA} \sim>_{\text {H }}+$＊	5.5 mA ＠ $74 \mathrm{~V} \mathrm{ac}, 47 \mathrm{~Hz}{ }^{\circ}>_{\text {g }}+\ldots$	$5.3 \mathrm{~mA} @ 159 \mathrm{Vac}, 47 \mathrm{Hz*}>_{\text {d }}+$＊
Current，Off－State Input，Max．	2.9 mA	2.9 mA	2.9 mA	2.6 mA
Power Dissipation，Max．	4.5 W＠132V ac	4.5 W＠132V ac	6．4 W＠132V ac	4.7 W＠264V ac
Thermal Dissipation，Max．	15．3 BTU／hr＠132V ac	15．3 BTU／hr＠132V ac	21．8 BTU／hr＠132V ac	16．2 BTU／hr＠264V ac
Dimensions（HxWxD），Metric	$46 \times 94 \times 53 \mathrm{~mm}$			
Dimensions（HxWxD），Imperial	$1.8 \times 3.7 \times 2.1$ in			
Isolation Voltage	120 V continuous Tested to 2150 V dc for 1 s and 1250 V ac for $60 \mathrm{~s}, \mathrm{I} / 0$ to system （No isloation between individual channels）	120 V continuous Tested to 2150 V dc for 1 s and 1250 V ac for $60 \mathrm{~s}, \mathrm{I} / 0$ to system and I / O to I／O	120 V continuous Tested to 2150 V dc for 1 s and 1250 V ac for $60 \mathrm{~s}, \mathrm{I} / 0$ to system （No isloation between individual channels）	Tested at 2600 V dc for $1 \mathrm{~s}, \mathrm{I} / 0$ to system （No isolation between individual channels）

＊Recommended terminal base is in bold text
＊Recommended terminal base is in bold text．
§Auxiliary terminal strips are required when using the 1794－TBN for the 1794－IA16 and 1794－IA16．
$\because A C$ inputs compatible with proximity switches with leakage ratings of I
＞eak
$\mathscr{H}<2.5 \mathrm{~mA}$ and

+ on
＊ $\mathrm{min}=5 \mathrm{~mA}$ ．

1794－IM8 Derating Curve

Derating Curve

The area within the curve represents the safe operating range for the module under various conditions of user supplied 220 V ac supply voltages and ambient temperatures．
$\square=$ All mounting positions（including normal horizontal， vertical，inverted horizontal）safe operating range．

FLEX I/O Digital AC Output Modules

1794-0A8 provides 8120 V ac $1 / 2 \mathrm{Amp}$ outputs that can be used up to 1 Amp with limitations.

1794-0A8I is the isolated version of the 1794-0A8.
1794-0A16 provides $161 / 4$ Amp outputs with specified limitations when used at $1 / 2$ Amp.

1794-0M8 provides 8220 V ac outputs rated at $1 / 2 \mathrm{Amp}$ each.
These modules are not fused. External channel fusing or use of fused terminal bases (TBNF) is required with the - point modules.

	1794-0A8	1794-0A8	1794-0A16	1794-0M8
Voltage, On-State Output, Nom.	120 V ac	120 Vac , isolated	120 V ac	220 V ac
Terminal Base Unit*	$\begin{aligned} & \text { 1794-TBNF, 1794-TB2, 1794-TB3, } \\ & \text { 1794-TB3S, 1794-TBN, 1794-TBKD } \end{aligned}$	1794-TBNF, 1794-TB2, 1794-TB3, 1794-TB3S, 1794-TBN, 1794-TBKD	$\begin{aligned} & \text { 1794-TB3, 1794-TB2, 1794-TB3S, } \\ & \text { 1794-TBN, 1794-TBKD } \end{aligned}$	1794-TBNF, 1794-TBN
Current, On-State Output, Min.	5 mA per output			
Current, On-State Output, Max.	500 mA per output @ $55^{\circ} \mathrm{C}$ (sufficient to operate an A-B Bulletin 500 NEMA size 3 motor starter) 750 mA per output @ $35^{\circ} \mathrm{C}$ 1.0 A on 4 nonadjacent outputs and 500 mA on the remaining 4 outputs @ $30^{\circ} \mathrm{C}$	500 mA per output @ $55^{\circ} \mathrm{C}$ (sufficient to operate an A-B Bulletin 500 NEMA size 3 motor starter) 750 mA per output @ $35^{\circ} \mathrm{C}$ 1.0A on 4 nonadjacent outputs and 500 mA on the remaining 4 outputs @ 30 ${ }^{\circ} \mathrm{C}$	500 mA per output @ $55^{\circ} \mathrm{C} \ddagger+\ldots$	$500 \mathrm{~mA} @ 55^{\circ} \mathrm{C}$
Current, On-State Output, per Module	4.0 A (8 outputs @ 500 mA)	4.0 A (8 outputs @ 500 mA)	4.0 A (16 outputs @ 250 mA)	4.0 A (8 outputs @ 500 mA)*
Leakage Current, Off-State Output, Max	2.25 mA	2.25 mA	2.25 mA	2.5 mA
Voltage Drop, On-State Output, Max.	1.0V @ 0.5 A	1.0 V @ 0.5 A	1.5 V @ 0.5 A	1.5 V @ 0.5 A
Output Surge Current, Max.	7 A for 45 ms , repeatable every 8 s	7 A for 45 ms , repeatable every 8 s	7 A for 40 ms , repeatable every 8 s	7 A for 40 ms , repeatable every 8 s
Voltage, On-State Output, Min. +	85 Vac	85 Vac	85 Vac	159 a ac
Voltage, On-State Output, Nom. +	120 V ac	120 V ac	120 Vac	220 Vac
Voltage, On-State Output, Max. +	132 Vac	132 V ac	132 Vac	264 V ac
Power Dissipation, Max.	$\begin{aligned} & 4.1 \text { W @ } 0.5 \mathrm{~A} \\ & 6.3 \text { W @ } 0.75 \mathrm{~A} \\ & 6.3 \text { W @ } 1.0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.1 \text { W @ } 0.5 \mathrm{~A} \\ & 6.3 \text { W @ } 0.75 \mathrm{~A} \\ & 6.3 \text { W @ } 1.0 \mathrm{~A} \end{aligned}$	4.7 W @ 0.5 A	5 W @ 0.5 A
Thermal Dissipation	$\begin{aligned} & 14.0 \mathrm{BTU} / \mathrm{hr} @ 0.5 \mathrm{~A} \\ & 21.1 \mathrm{BTU} / \mathrm{hr} @ 0.75 \mathrm{~A} \\ & 21.4 \text { BTU/hr @ } 1.0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 14.0 \mathrm{BTU} / \mathrm{hr} @ 0.5 \mathrm{~A} \\ & 21.1 \mathrm{BTU} / \mathrm{hr} @ 0.75 \mathrm{~A} \\ & 21.4 \mathrm{BTU} \mathrm{hr} @ 1.0 \mathrm{~A} \end{aligned}$	16.1 BTU/hr @ 0.5 A	17.1 BTU/hr @ 0.5 A
Dimensions (HxWxD), Metric	$46 \times 94 \times 53 \mathrm{~mm}$			
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in			
Isolation Voltage	120 V continuous Tested to 2150 V dc for 1 s and 1250 V ac for $60 \mathrm{~s}, \mathrm{I} / 0$ to system (No isolation between individual channels)	120 V continuous Tested to 2150 V dc for 1 s and 1250 V ac for 60 s , channel to channel, I/O to system	120 V continuous Tested to 2150 V dc for 1 s and 1250 V ac for 60 s , I/O to system (No isolation between individual channels)	Tested at 2600 V dc for $1 \mathrm{~s}, \mathrm{I} / 0$ to system (No isolation between individual channels)

*Recommended terminal base is in bold text.
*Auxiliary terminal strips are required when using the 1794-TBN for the 1794-OA16 and 1794-IA16.
$\ddagger \ddagger$ using 0.5 A outputs, alternate wiring so that no two 0.5 A outputs are adjacent. See the 1794-OA16 derating curve for mounting other than normal horizonal.

* See the 1794-OM8 derating curve.
§Below 50 mA the voltage drop across the module will be higher and the voltage waveform may have some small oscillation (less than 5 V).
*-If using 0.5 A outputs, alternate wiring so that no two 0.5 A outputs are adjacent. See the 1794-OA16 derating curve for mounting other than normal horizontal.
See the 1794-OM8 derating curve.
$\mathscr{H} 1794-\mathrm{OA} 81$ also tested for isolation between channels.
+The external ac supply voltage must be capable of a 50 A surge for $1 / 2$ cycle at power-up.
Note: The output signal delay, OFF to ON or ON to OFF is $1 / 2$ cycle maximum.
Modules have a yellow status indicator for each channel. These indicators are driven from the logic-side circuitry
Module outputs are not fused. Fusing of individual outputs is required. If applicable, the 1794-TBNF is recommended, otherwise you must provide external fusing. The following fuses are
recommended:
- 1794-OA8, -OA8I-Use 1.6 A, 250V Slow-Blow, Littelfuse pt. no. 23901.6; San-o SD6-1.6 A; AB pt. no. 94171304 . The 1794-TBNF comes with SD6-1.6 A fuses installed.
- 1794-OA16 - Use 2.5 A, 150V MQ2 normal fuse.
- 1794-OM8 - Use 0.8 A, 250V MQ4 normal fuse.

FLEX I／O Digital AC Output Modules

1794－0A8 provides 8120 V ac $1 / 2 \mathrm{Amp}$ outputs that can be used up to 1 Amp with limitations．

1794－0A8I is the isolated version of the 1794－0A8．
1794－0A16 provides $161 / 4$ Amp outputs with specified limitations when used at $1 / 2$ Amp．

1794－0M8 provides 8220 V ac outputs rated at $1 / 2 \mathrm{Amp}$ each．
These modules are not fused．External channel fusing or use of fused terminal bases （TBNF）is required with the－point modules．

	1794－0A8	1794－0A8	1794－0A16	1794－0M8
Voltage，On－State Output，Nom．	120 V ac	120 V ac，isolated	120 V ac	220 V ac
Terminal Base Unit＊	1794－TBNF，1794－TB2，1794－TB3， 1794－TB3S，1794－TBN，1794－TBKD	1794－TBNF，1794－TB2，1794－TB3， 1794－TB3S，1794－TBN，1794－TBKD	$\begin{aligned} & \text { 1794-TB3, 1794-TB2, 1794-TB3S, } \\ & \text { 1794-TBN, 1794-TBKD } \end{aligned}$	1794－TBNF，1794－TBN
Current，On－State Output，Min．	5 mA per output			
Current，On－State Output，Max．	500 mA per output＠ $55^{\circ} \mathrm{C}$（sufficient to operate an A－B Bulletin 500 NEMA size 3 motor starter） 750 mA per output＠ $35^{\circ} \mathrm{C}$ 1．0 A on 4 nonadjacent outputs and 500 mA on the remaining 4 outputs＠ $30^{\circ} \mathrm{C}$	500 mA per output＠ $55^{\circ} \mathrm{C}$（sufficient to operate an A－B Bulletin 500 NEMA size 3 motor starter） 750 mA per output＠ $35^{\circ} \mathrm{C}$ 1．0A on 4 nonadjacent outputs and 500 mA on the remaining 4 outputs＠ 30 ${ }^{\circ} \mathrm{C}$	500 mA per output＠ $55^{\circ} \mathrm{C} ⿳ ㇒ ⿻ ⿱ 一 ⿱ 日 一 丨 一 力 巾 \sim$	$500 \mathrm{~mA} @ 55^{\circ} \mathrm{C} *$
Current，On－State Output，per Module	4.0 A （8 outputs＠ 500 mA ）	4.0 A （8 outputs＠ 500 mA ）	4.0 A（16 outputs＠ 250 mA ）	4.0 A （ 8 outputs＠ 500 mA ）＊
Leakage Current，Off－State Output，Max	2.25 mA	2.25 mA	2.25 mA	2.5 mA
Voltage Drop，On－State Output，Max．	1．0V＠0．5 A	1．0V＠0．5 A	1．5V＠ 0.5 A	1.5 V ＠ 0.5 A
Output Surge Current，Max．	7 A for 45 ms ，repeatable every 8 s	7 A for 45 ms ，repeatable every 8 s	7 A for 40 ms ，repeatable every 8 s	7 A for 40 ms ，repeatable every 8 s
Voltage，On－State Output，Min．＋	85 V ac	85 Vac	85 V ac	159 V ac
Voltage，On－State Output，Nom．+	120 V ac	120 V ac	120 V ac	220 V ac
Voltage，On－State Output，Max．+	132 Vac	132 V ac	132 Vac	264 V ac
Power Dissipation，Max．	$\begin{aligned} & 4.1 \text { W @ 0.5 A } \\ & 6.3 \text { W @ } 0.75 \mathrm{~A} \\ & 6.3 \text { W @ } 1.0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.1 \text { W @ } 0.5 \mathrm{~A} \\ & 6.3 \text { W @ } 0.75 \mathrm{~A} \\ & 6.3 \text { W @ } 1.0 \mathrm{~A} \end{aligned}$	4.7 W＠ 0.5 A	5W＠ 0.5 A
Thermal Dissipation	14.0 BTU／hr＠ 0.5 A 21.1 BTU／hr＠ 0.75 A 21.4 BTU／hr＠ 1.0 A	$\begin{aligned} & \text { 14.0 BTU/hr @ } 0.5 \mathrm{~A} \\ & 21.1 \mathrm{BTU} \mathrm{hr} @ 0.75 \mathrm{~A} \\ & 21.4 \mathrm{BTU} / \mathrm{hr} @ 1.0 \mathrm{~A} \end{aligned}$	16．1 BTU／hr＠ 0.5 A	17．1 BTU／hr＠ 0.5 A
Dimensions（HxWxD），Metric	$46 \times 94 \times 53 \mathrm{~mm}$			
Dimensions（HxWxD），Imperial	$1.8 \times 3.7 \times 2.1$ in			
Isolation Voltage	120 V continuous Tested to 2150 V dc for 1 s and 1250 V ac for $60 \mathrm{~s}, \mathrm{I} / 0$ to system （No isolation between individual channels）	120 V continuous Tested to 2150 V dc for 1 s and 1250 V ac for 60 s ，channel to channel，I／O to system	120 V continuous Tested to 2150 V dc for 1 s and 1250 V ac for $60 \mathrm{~s}, \mathrm{I} / 0$ to system （No isolation between individual channels）	Tested at 2600 V dc for $1 \mathrm{~s}, \mathrm{I} / 0$ to system （No isolation between individual channels）

＊Recommended terminal base is in bold text．
＊Auxiliary terminal strips are required when using the 1794－TBN for the 1794－OA16 and 1794－IA16．
\ddagger If using 0．5 A outputs，alternate wiring so that no two 0．5 A outputs are adjacent．See the 1794－OA16 derating curve for mounting other than normal horizonal．
＊See the 1794－OM8 derating curve．
§Below 50 mA the voltage drop across the module will be higher and the voltage waveform may have some small oscillation（less than 5 V ）．
$\dot{\circ}$ If using 0．5 A outputs，alternate wiring so that no two 0．5 A outputs are adjacent．See the 1794－OA16 derating curve for mounting other than normal horizontal．
－See the 1794－OM8 derating curve．
$\mathscr{H} 1794-O A 81$ also tested for isolation between channels．
＋The external ac supply voltage must be capable of a 50 A surge for $1 / 2$ cycle at power－up
Note：The output signal delay，OFF to ON or ON to OFF is $1 / 2$ cycle maximum．
Modules have a yellow status indicator for each channel．These indicators are driven from the logic－side circuitry．
Module outputs are not fused．Fusing of individual outputs is required．If applicable，the 1794 －TBNF is recommended，otherwise you must provide external fusing．The following fuses are
recommended：
－1794－OA8，－OA8I－Use 1．6 A，250V Slow－Blow，Littelfuse pt．no．23901．6；San－o SD6－1．6 A；AB pt．no．94171304．The 1794－TBNF comes with SD6－1．6 A fuses installed．
－1794－OA16－Use 2．5 A，150V MQ2 normal fuse．
－1794－OM8－Use 0．8 A，250V MQ4 normal fuse．

1794-0A16 Derating Curve

The area within the curve represents the safe operating range for the module under various conditions of user supplied 120V ac supply voltages and ambient temperature.
$\square=$ Normal mounting safe operating range $\quad \square$ included
\square = Other mounting positions (including inverted
horizontal, vertical) safe operating range

1794-0M8 Derating Curve

The area within the curve represents the safe operating range for the module under various conditions of user supplied 220 V ac supply voltages and ambient temperatures.
$\square=$ Normal mounting safe operating range \square included
$\square=$ Other mounting positions (including inverted horizontal,
vertical) safe operating range

FLEX I/O Digital DC Input Modules

	1794-IB8 \& 1794-IB16	1794-IB32	1794-IV16	1794-IC16
Voltage, On-State Input, Min.	10 V dc , sinking	19.2 V dc , sinking	10 V dc, sourcing	30 V dc , sinking
Voltage, On-State Input, Nom.	24 V dc	24 V dc	24 V dc	48 V dc
Voltage, On-State Input, Max.	31.2 V dc	31.2 V dc	31.2 V dc	60 V dc
Terminal Base Unit	1794-TB3, 1794-TB3S*	1794-TB32, 1794-TB32S*	$\begin{aligned} & \text { 1794-TB2, 1794-TB3, 1794-TB3S, } \\ & \text { 1794-TBKD* } \end{aligned}$	1794-TB3, 1794-TB3S*
Current, On-State Input, Nom.	8 mA @ 24 V dc	4.1 mA @ 24V dc	8 mA @ 24V dc	5.0 mA at 48 V dc
Current, On-State Input, Max.	11 mA	6.0 mA	11 mA	11.0 mA
Input Impedance, Max.	$4.6 \mathrm{k} \Omega$	$6.0 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	$11 \mathrm{k} \Omega$
Voltage, On-State Input, Min.	10 Vdc	19.2 V dc	10 Vdc	30 Vdc
Voltage, Off-State Input, Max.	5.0 V dc	5.0 V dc	5.0 V dc	10.0 V dc
Current, On-State Input, Min.	2.0 mA	2.0 mA	2.0 mA	2.0 mA
Current, Off-State Input, Max.	1.5 mA	1.5 mA	1.5 mA	1.5 mA
Power Dissipation, Max.	3.1 W @ 31.2V dc ${ }_{\text {畨 }}$	6.0 W @ 31.2V dc	5.7 W @ 31.2V dc	6.4 W @ 60V dc
Thermal Dissipation, Max.	11.9 BTU/hr @ 31.2V dc \ddagger	20.5 BTU/hr @ 31.2V dc	19.4 BTU/hr @ 31.2V dc	21.9 BTU/hr @ 60V dc
Dimensions (HxWxD), Metric	$46 \times 94 \times 53 \mathrm{~mm}$ \%	$45.7 \times 94.0 \times 53.3 \mathrm{~mm}$	$46 \times 94 \times 53 \mathrm{~mm}$	$46 \times 94 \times 53 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in \ddagger	$1.8 \times 3.7 \times 2.1$ in	$1.8 \times 3.7 \times 2.1$ in	$1.8 \times 3.7 \times 2.1$ in
Isolation Voltage	Tested at 850 V dc for 1 s , $/ / 0$ to system (No isolation between individual channels)	Tested at 2121 V dc for $1 \mathrm{~s}, \mathrm{I} / 0$ to system (No isolation between individual channels)	Tested at 2121 V dc for $1 \mathrm{~s}, \mathrm{I} / 0$ to system (No isolation between individual channels)	Tested at 1900 V dc for $1 \mathrm{~s}, \mathrm{I} / 0$ to system (No isolation between individual channels)

*Recommended terminal base is in bold text.
*6.1 W @ 31.2V dc for 1794-IB16.
$\ddagger 20.8 \mathrm{BTU} / \mathrm{hr} @ 31.2 \mathrm{~V}$ dc for 1794-IB16.
Note: Do not put the 1794-IB8 module next to an output module in 8-point compact addressing with the 1794-ASB2/C or -ASB/D.
Modules have a yellow status indicator for each channel. These indicators are driven from the customer field-side input device.

1794-IB16 Derating Curve

The area within the curve represents the safe operating range for the module under various conditions of user supplied 24 V dc supply voltages and ambient temperatures.

$$
\begin{aligned}
& \square=\text { Normal mounting safe operating range } \square \text { included } \\
& \square=\text { Other mounting positions (including inverted } \\
& \text { horizontal, vertical) safe operating range }
\end{aligned}
$$

1794-IB16D Derating Curve

Derating Curves

1794-IB16D Input Voltage

Sensor Power

1794-IB32 Derating Curve

The area within the curve represents the safe operating range for the module under various conditions of user supplied 24 V dc supply voltages and ambient temperatures.

1794-IC16 Derating Curve

Derating Curve

The area within the curve represents the safe operating range for the module under various conditions of user supplied 48 V dc supply voltages and ambient temperature.
$\square=$ Normal mounting safe operating range \square included
$\square=$ Other mounting positions (including inverted horizontal)
safe operating range

FLEX I/O Digital DC Output Modules

1794-0B8 and 1794-OB16 provide 16 sourcing $1 / 2$ Amp outputs (8 for the 1794OB8) over a wide $10 \ldots 31.2 \mathrm{~V}$ dc input voltage range.

1794-0V16 is the sinking version of the 1794-OB16.
$\mathbf{1 7 9 4 - 0 C 1 6}$ is the 48 V dc version of the $1794-0 \mathrm{~B} 16$.
These modules are not fused. External fusing is strongly recommended or use protected output modules.

	1794-0B8§	1794-0B16§	1794-0V16§	1794-0С16§
Voltage, On-State Output, Nom.	24 V dc, sourcing	24 V dc, sourcing	24 V dc, sinking	48 V dc, sourcing
Voltage, On-State Output, Min.	10 V dc	10 V dc	10 V dc	30 Vdc
Voltage, On-State Output, Max.	31.2 V dc	31.2 V dc	31.2 V dc	60 V dc @ $45^{\circ} \mathrm{C}$ 55 V dc @ $55^{\circ} \mathrm{C}$
Voltage Drop, On-State Output, Max.	0.5 V dc	0.5 V dc	0.2 V dc	1.0 V dc @ 0.5A
Terminal Base Unit	$\begin{aligned} & \text { 1794-TB2, 1794-TB3, 1794-TB3S, } \\ & \text { 1794-TBKD* } \end{aligned}$	$\begin{aligned} & \text { 1794-TB2, 1794-TB3, 1794-TB3S, } \\ & \text { 1794-TBKD* } \end{aligned}$	1794-TB3, 1794-TB3S*	$\begin{aligned} & \text { 1794-TB3, 1794-TB2, 1794-TB3S, } \\ & \text { 1794-TBKD* } \end{aligned}$
Current, On-State Output, Min.	1.0 mA per channel	1.0 mA per channel	1.0 mA per channel	2.0 mA per channel
Current, On-State Output, Max.	500 mA per channel, 4 A per module	500 mA per channel, 8 A per module	500 mA per channel, 8 A per module	500 mA per channel, 8 A per module
Leakage Current, Off-State Output, Max	0.5 mA	0.5 mA	0.5 mA	1.0 mA
Output Surge Current, Max.	2 A for 50 ms , repeatable every 2 s	2 A for 50 ms , repeatable every 2 s	2 A for 50 ms , repeatable every 2 s	4 A for 10 ms , repeatable every 2 s
Output Delay Time, OFF to ON, Max.	0.5 ms	0.5 ms	0.5 ms	0.5 ms 桃
Output Delay Time, ON to OFF, Max.	1.0 ms	1.0 ms	1.0 ms	$\begin{aligned} & 1.0 \mathrm{~ms} @ 25^{\circ} \mathrm{C} \\ & 2.0 \mathrm{~ms} @ 55^{\circ} \mathrm{C} \ddagger \end{aligned}$
External DC Supply Voltage Range	$10 \ldots 31.2 \mathrm{~V} \mathrm{dc}$ (5% ac ripple)	$10 \ldots 31.2 \mathrm{~V} \mathrm{dc} \mathrm{(5} \mathrm{\%} \mathrm{ac} \mathrm{ripple)}$	$10 \ldots 31.2 \mathrm{~V} \mathrm{dc}$ (5\% ac ripple)	$30 \ldots 60 \mathrm{~V}$ dc (5% ac ripple)
External DC Supply Current Range	$10 \ldots 35 \mathrm{~mA}$	20... 65 mA	20... 65 mA	$13 . . .27 \mathrm{~mA}$
Power Dissipation, Max.	3.3 W @ 31.2V dc	5.3 W @ 31.2V dc	4.2W @ 31.2V dc	3.7 W @ 60V dc
Thermal Dissipation, Max.	11.2 BTU/hr @ 31.2V dc	18.1 BTU/hr @ 31.2V dc	14.3 BTU/hr @ 31.2V dc	12.6 BTU/hr @ 60V dc
Dimensions (HxWxD), Metric	$46 \times 94 \times 53 \mathrm{~mm}$			
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in			
Isolation Voltage	50 V continuous, $\mathrm{I} / 0$ to system Tested to 850 V dc for $1 \mathrm{~s}, \mathrm{I} / 0$ to system (No isolation between individual channels)	50 V continuous, $\mathrm{I} / 0$ to system Tested to 850 V dc for $1 \mathrm{~s}, \mathrm{I} / 0$ to system (No isolation between individual channels)	50 V continuous Tested 1770 Vdc for $60 \mathrm{sec}, \mathrm{I} / 0$ to system (No isloation between individual channels)	75 V continuous, $\mathrm{I} / 0$ to system Tested to 1900 V dc for $1 \mathrm{~s}, \mathrm{I} / 0$ to system (No isolation between individual channels)

Digital DC Protected Output Modules

1794-0B16P provides 16 sourcing $1 / 2$ Amp outputs self-protected against shorts, overloads, and over temperature. The faulted output will automatically return when the fault is removed. No feedback to the processor is provided.

1794-OB8EP provides 8 sourcing 2 Amp outputs with electronic fuse type of overload protection, which opens when overloaded. The fuse can be 'reset' several ways. Fault status is provided to the processor.

1794-0B32P provides 32 self-protected sourcing $1 / 2 \mathrm{Amp}$ outputs in 2 groups of 16 outputs. Separate voltage sources can be used with each group.

1794-0V16P is the sinking version of the 1794-0B16P.

	1794-0B16P	1794-0B8EP	1794-0B32P	1794-0V16P
Voltage, On-State Output, Nom.	24 V dc, sourcing	24 V dc, sourcing	24 V dc , sourcing	24 V dc , sinking
Voltage, On-State Output, Min.	10 Vdc	19.2 V dc	10 Vdc	10 V dc
Voltage, On-State Output, Max.	31.2 V dc*	31.2 V dc	31.2 V dc	31.2 V dc
Voltage Drop, On-State Output, Max.	0.5 V dc	0.2 V dc	0.5 V dc	0.2 Vdc
Terminal Base Unit	$\begin{aligned} & \text { 1794-TB2, 1794-TB3, 1794-TB3S, } \\ & \text { 1794-TBKD* } \end{aligned}$	$\begin{aligned} & \text { 1794-TB3, 1794-TB2, 1794-TB3S, } \\ & \text { 1794-TBN, 1794-TBKD } \end{aligned}$	1794-TB32, 1794-TB32S楽	1794-TB3, 1794-TB3S䍗
Current, On-State Output, Min.§	1.0 mA per channel			
Current, On-State Output, Max.	500 mA per channel, 8 A per module	2.0 A per channel, 10 A per module	500 mA per channel; 14 A per module (6 A total for channels $0 \ldots 15 ; 8$ A total for channels $16 \ldots 31$)	500 mA per channel, 8 A per module
Leakage Current, Off-State Output, Max	0.5 mA	0.5 mA	0.5 mA	0.5 mA
Output Surge Current, Max.	1.5 A for 50 ms , repeatable every 2 s	4 A for 10 ms , repeatable every $3 \mathrm{~s} \ddagger$	2 A for 50 ms , repeatable every 2 s	2 A for 50 ms , repeatable every 2 s
External DC Supply Voltage Range	$10 \ldots 31.2 \mathrm{~V} \mathrm{dc}$ (5% ac ripple)	$19.2 \ldots 31.2 \mathrm{~V}$ dc (5% ac ripple)	$10 \ldots 31.2 \mathrm{~V}$ dc (5\% ac ripple)	$10 \ldots 31.2 \mathrm{~V} \mathrm{dc} \mathrm{(} 5 \%$ ac ripple)
External DC Supply Current Range	25... 75 mA	20...35 mA	$103 \ldots 273 \mathrm{~mA}$	20... 65 mA
Power Dissipation, Max.	5.0 W @ 31.2V dc	5.5 W @ 31.2V dc	5.3 W @ 31.2V dc	4.2 W @ 31.2V dc
Thermal Dissipation, Max.	17.0 BTU/hr @ 31.2V dc	18.8 BTU/hr @ 31.2V dc	18.1 BTU/hr @ 31.2 Vdc	14.3 BTU/hr @ 31.2V dc
Dimensions (HxWxD), Metric	$46 \times 94 \times 53 \mathrm{~mm}$	$46 \times 94 \times 53 \mathrm{~mm}$	$45.7 \times 94.0 \times 53.3 \mathrm{~mm}$	$46 \times 94 \times 53 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in			
Isolation Voltage	50 V (continuous), Basic Insulation Type Type tested at 2121 V dc for 60 s , between field side and system No isolation between individual channels	50 V continuous, $\mathrm{I} / 0$ to system Tested to 850 V dc for $1 \mathrm{~s}, \mathrm{I} / 0$ to system (No isolation between individual channels)	50 V continuous, $\mathrm{I} / 0$ to system Tested to 2150 V ac for $1 \mathrm{~s}, \mathrm{I} / 0$ to system (No isolation between individual channels)	50 V continuous Tested 1770 Vdc for 60 sec , I/0 to system (No isloation between individual channels)

*See 1794-OB16P Derating Curve
*Recommended terminal base is in bold text.
\ddagger See 1794-OB8EP Output Minimum Surge chart.

1794-0B16P Derating Curve

The area within the curve represents the safe operating range for the module under various conditions of user supplied 24 V dc supply voltages and ambient temperatures.
$\square=$ Normal mounting safe operating range \square included
$\square=$ Other mounting positions (including inverted
horizontal, vertical) safe operating range

1794-0B8EP Output Minimum Surge

FLEX I/O Digital DC Diagnostic Modules

1794-IB16D is the diagnostic version of the 1794-IB16.
1794-0B16D is the diagnostic version of the 1794-OB16.
The modules can detect open wire, short circuit, and reverse polarity of external power. When a fault is detected, the module turns on the module fault LED, the corresponding channel's red LED, and sets the corresponding module error bit (open wire, short circuit, or reverse power bit). The reporting function provides the results of the diagnostics as bits in the data table.

The modules can detect open wire, short-circuit, and reverse polarity of external power. When a fault is detected, the module turns on the module fault LED, the corresponding channel's red LED, and sets the module error open wire, short-circuit, or reverse power error bit. The reporting function provides the results of the diagnostics as bits in its data table.

The modules have 16 bi-color channel status indicators and one red module status indicator. These indicators are driven from the customer field side power.

	1794-IB16D
Voltage, On-State Input, Min.	10 V dc , sinking
Voltage, On-State Input, Nom.	24 Vdc
Voltage, On-State Input, Max.	31.2V dc*
Voltage, Off-State Input, Max.	5.0 V dc
Current, On-State Input, Nom.	8.2 mA at 24 V dc
Current, On-State Input, Max.	12.1 mA @ 31.2V dc
Current, On-State Input, Max.	12.1 mA @ 31.2V dc
Terminal Base Unit	1794-TB32, 1794-TB32S䉿
Input Impedance, Max.	$3.1 \mathrm{k} \Omega$
Current, On-State Input, Min.	2.0 mA at 10 dc
Current, Off-State Input, Max.	1.5 mA
Power Dissipation, Max.	8.5 W @ 31.2V dc
Thermal Dissipation, Max.	29 BTU/hr @ 31.2V dc
Detect Reverse Polarity Voltage	=2,5100
Sensor Voltage Drop	2.2 V dc max
Current, Sensor Source, Max.	50 mA max
Dimensions (HxWxD), Imperial	=4,1070043
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in
Isolation Voltage	Tested at 2121 V dc for 1 s , $/ / 0$ to system (No isolation between individual channels)

*See 1794-IB16D Input Voltage Derating chart.

* Recommended terminal base is in bold text.

	1794-0B16D
Voltage, On-State Output, Min.	10 V dc , sourcing
Voltage, On-State Output, Max.	31.2 V dc
Voltage Drop, On-State Output, Max.	0.5 V dc @ 0.5 A
Terminal Base Unit	1794-TB3, 1794-TB3S, 1794-TBKD*
Current, On-State Output, Min.§	2.0 mA per channel
Current, On-State Output, Max.	500 mA per channel 8 A per module
Leakage Current, Off-State Output, Max	0.5 mA
Output Surge Current, Max.	2 A for 50 ms , repeatable every 2 s
External DC Supply Voltage Range	$10 \ldots 31.2 \mathrm{~V} \mathrm{dc} \mathrm{(5} \mathrm{\%} \mathrm{ac} \mathrm{ripple)}$
External DC Supply Current Range	$56 \ldots 78 \mathrm{~mA}$
Power Dissipation, Max.	4.8 W @ 31.2V dc
Thermal Dissipation, Max.	16.4 BTU/hr @ 31.2V dc
Short Circuit Protection	Thermal shutdown (auto reset) Detection condition: when external power active, output signal active, and output port voltage less than 2 V
Short Circuit Protection	Thermal shutdown (auto reset) Detection condition: when external power active, output signal active, and output port voltage less than 2 V
Open Wire Detect, Off-State Leakage Current	0.1 mA - When external power active and output signal inactive
Detect Reverse Polarity Voltage	10 V min.: Module must detect if the reverse polarity external power supply voltage is greater than the value
Current, Sensor Source, Max.	Yes
Dimensions (HxWxD), Metric	=2,1070042
Dimensions (HxWxD), Metric	$45.7 \times 94.0 \times 53.3 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in
Isolation Voltage	50 V continuous, $\mathrm{I} / 0$ to system Tested to 2121 V dc for $1 \mathrm{~s}, \mathrm{I} / 0$ to system (No isolation between individual channels)

*Recommended terminal base is in bold text.

Derating Curves 1794-IB16D Input Voltage

Derating Curves

1794-IB16D Input Voltage

Sensor Power

FLEX I/O Digital DC Combination Modules

The $1794-\mathrm{IB} 16 \mathrm{XOB} 16 \mathrm{P}$ has ouptputs that are self-protected against shorts, overloads, and over temperature similar to the 0B16P. The 1794-IB10X0B6 requires the use of external fusing for individual outputs.

	1794-IB10X0B6\%	1794-IB16X0B16P>
Terminal Base Unit	1794-TB3, 1794-TB3S*	1794-TB32, TB32S*
Isolation Voltage	50V (continuous), Basic Insulation Type Type tested at 1250 V ac for 60 s , between field side and system Routine tested at 2121 V dc for 1 s , between field side and system No isolation between individual channels	50V, Basic Insulation type Tested to 2121 V dc for 1 s , system to I/O and inputs to outputs
Power Dissipation, Max.	6.0 W @ 31.2V dc	7.0 W @ 31.2V dc
Thermal Dissipation, Max.	20.3 BTU/hr @ 31.2V dc	23.9 BTU/hr @ 31.2V dc
Number of Inputs	10	16
Voltage, On-State Input, Min.	10 V dc	10 Vdc 桃
Voltage, On-State Input, Nom.	24 V dc	24 V dc
Voltage, On-State Input, Max.	31.2 V dc	31.2 V dc ${ }^{\text {粯 }}$
Current, On-State Input, Min.	2.0 mA	2.0 mA
Current, On-State Input, Nom.	8.0 mA @ 24V dc	8.8 mA @ 24V dc
Current, On-State Input, Max.	11.0 mA	12.1 mA
Voltage, Off-State Input, Max.	5.0 V dc	5.0 V dc
Current, Off-State Input, Max.	1.5 mA	1.5 mA
Input Impedance, Max.	$4.8 \mathrm{k} \Omega$	$2.5 \mathrm{k} \Omega$
Number of Outputs	6	16
Voltage, On-State Output, Min.	10 V dc	$10 \mathrm{~V} \mathrm{dc} \ddagger$
Voltage, On-State Output, Nom.	24 V dc	24 V dc
Voltage, On-State Output, Max.	31.2 V dc	$31.2 \mathrm{Vdc} \ddagger$
Voltage Drop, On-State Output, Max.	1 V dc @ 2 A 0.5 V dc @ 1 A	0.5 V dc @ 0.5 A
Current, On-State Output, Min.	1.0 mA per channel	1.0 mA per channel
Current, On-State Output, Max.	2.0 A per channel 10 A per module	0.5 A per channel 8 A per module
Voltage, Off-State Output, Max.	31.2 V dc	31.2 V dc
Leakage Current, Off-State Output, Max	0.5 mA	0.5 mA
Output Delay Time, OFF to ON, Max.	0.5 ms §	0.5 ms
Output Delay Time, ON to OFF, Max.	1.0 ms §	1.0 ms
Output Surge Current, Max.	4 A for 50 ms , repeatable every 2 s	1.5 A for 50 ms , repeatable every 2 s
Dimensions (HxWxD), Metric	$46 \times 94 \times 53 \mathrm{~mm}$	$45.7 \times 94.0 \times 53.3 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in	$1.8 \times 3.7 \times 2.1$ in
External DC Supply Voltage Range	$10 \ldots 31.2 \mathrm{~V} \mathrm{dc}$ (includes 5\% ac ripple)	$10 \ldots 31.2 \mathrm{~V} \mathrm{dc}$ (includes 5\% ac ripple)
External DC Supply Current Range	8 mA @ 10 V dc $15 \mathrm{~mA} @ 19.2 \mathrm{~V}$ dc 19 mA @ 24 V dc $25 \mathrm{~mA} @ 31.2 \mathrm{~V}$ dc	78 mA @ 10V dc

*Recommended terminal base is in bold text.
*Refer to derating curve.
\ddagger Refer to the Derating Curve.
§Output off-to-on or on-to-off delay is the time from the module issuing an output on or off until the output actually turns on or
off.. Module outputs are not fused. Fusing is recommended. If fusing is desired, you must supply external fusing. Use SAN-
O MQ4-3A or Littelfuse 235-003.
> Outputs are electronically protected against overloads and shorts.

FLEX I/O Digital Contact Output Module (Relay) 1794-OW8

The 1794-0W8 module provides 8 isolated Form A (normally open) contacts capable of switching up to 2 A at up to 230 V ac and 125 V dc.

Do not attempt to increase load current or wattage capability beyond the maximum rating by connecting two or more outputs in parallel. The slightest variation in relay switching time may cause one relay to momentarily switch the total load current. Apply only +24 V dc power to the power terminals on the terminal base. Make certain that all relay wiring is properly connected before applying any power to the module.

Total current draw through the terminal base unit is limited to 10 A . Separate power connections to the terminal base unit may be necessary.

The use of external fuses or a fused terminal base is required for individual outputs.
Simplified Schematic of Relay Module

Load power can be obtained from a variety of sources, and can range from +5 V dc to 240 Vac . Make certain that only 24 V dc is applied to the module power terminals on the module terminal base.

	1794-0W8
Number of Outputs	8
Terminal Base Unit	1794-TBNF, 1794-TBN, 1794-TB2, 1794-TB3, 1794-TB3S, 1794-TBKD*
External DC Supply Voltage Range	$19.2 \ldots 31.2 \mathrm{~V} \mathrm{dc}$ (includes 5\% ac ripple)
External DC Supply Current Range	125 mA , max
Leakage Current, Off-State Output, Max	1 mA @ 240V ac (through a snubber)
Output Delay Time, OFF to ON, Max.	10 ms 慗
Output Delay Time, ON to OFF	$10 \mathrm{~ms} \ddagger$
Relay Output Current Rating, Resistive	$2.0 \mathrm{~A} @ 5 \ldots 30 \mathrm{~V}$ dc (at rated power) $0.5 \mathrm{~A} @ 48 \mathrm{~V}$ dc (at rated power) $0.25 \mathrm{~A} @ 125 \mathrm{~V}$ dc (at rated power) $2.0 \mathrm{~A} @ 125 \mathrm{~V}$ ac (at rated power) $2.0 \mathrm{~A} @ 240 \mathrm{Vac}$ (at rated power)
Relay Output Current Rating, Inductive	$2.0 \mathrm{~A} @ 5 \ldots 30 \mathrm{Vdc} ; \mathrm{I} / \mathrm{R}=7 \mathrm{~ms}$ (at rated power) $0.5 \mathrm{~A} @ 48 \mathrm{~V} \mathrm{dc} ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$ (at rated power) $0.25 \mathrm{~A} @ 125 \mathrm{~V} \mathrm{dc} ; \mathrm{I} / \mathrm{R}=7 \mathrm{~ms}$ (at rated power) $2.0 \mathrm{~A} @ 125 \mathrm{~V}$ ac; 15 A make; $\mathrm{PF}=\cos \Theta=0.4$ (at rated power) $2.0 \mathrm{~A} @ 240 \mathrm{Vac} ; 15 \mathrm{~A}$ make; $\mathrm{PF}=\cos \Theta=0.4$ (at rated power)
Contact Resistance, Initial	$30 \mathrm{~m} \Omega$
Switching Frequency (Hz)	0.3 Hz , (1 operation every 3 s)
Bounce Time, Mean	1.2 ms
Contact Load, Min.	$100 \mu \mathrm{~A} @ 100 \mathrm{mV} \mathrm{dc}$
Mechanical Life	100,000 operations at rated loads
Power Dissipation, Max.	5.5 W @ 31.2V dc
Thermal Dissipation, Max.	18.8 BTU/hr @ 31.2V dc
Dimensions (HxWxD), Metric	$69 \times 55 \times 80 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$2.72 \times 2.17 \times 3.15$ in
Fusing	$3.0 \mathrm{~A}, 250 \mathrm{~V}$ ac slow blow fuse (Littelfuse part number 239003)

*Recommended terminal base is in bold text.
*Time from valid output on signal to relay energization by module.
\ddagger Time from valid output off signal to relay deenergization by module.

Analog,
 Thermocouple, and RTD I/O Modules

Choose analog, thermocouple, and/or RTD I/O modules when you need:

- Individually configurable channels allow the module to be used with a variety of sensors.
- On-line configuration. Modules can be configured in RUN mode using programming software or the control program. This allows you to change configuration while the system is operating.
- Selectable input filters on many modules allow you to select from several different filter frequencies for each channel that best meets the performance needs of your application. Lower filter settings provide greater noise rejection and resolution. Higher filter settings provide faster performance. Note: Isolated analog modules have four filter selections; the thermocouple module has ten; and the combined RTD/thermocouple module has eight.
- Ability to direct output device operation during an abnormal condition. Each channel of the output module can be individually configured to hold its last value or assume a user-defined value on either a run-to-program or run-to-fault condition. This feature allows you to set the condition of your analog devices, and therefore your control process, which may help to ensure a reliable shutdown.
- Selectable response to broken input sensor. This feature provides feedback to the controller that a field device is not connected. This allows you to specify corrective action based on the channel condition.
- Single-ended or differential inputs depending on module. Analog modules have single-ended inputs while isolated analog and temperature modules have differential inputs. Single-ended voltage sensors reduce costs. Differential inputs are more expensive, but are typically more noise immune.
- Over- and under-range detection and indication are available with most modules. This eliminates the need to test values in the control program. While standard analog modules have limited diagnostics, temperature and isolated analog modules provide over-range, under-range, and wire-off diagnostics with alarm bits.
- On-board scaling is performed by the temperature modules and is user configurable for either ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{K}, \mathrm{Ohms}$, or mV . This eliminates the need to scale the data in the user program.
- Accuracy and resolution varies by module and the associated application. Specifications are given for each module at it's operational conditions.
- Internal calibration is performed in the analog modules (1794-IE8, -OE4, and IE4XOE2). User calibration is recommended (yearly) for isolated analog and temperature modules. All modules come factory calibrated.

Analog Module Summary

Cat. No.	Description	Number of Inputs	Number of Outputs	
1794-IE8	FLEX I/O 24V dc Selectable Analog 8 Input Module	8		Terminal Base Unit TB34-T, 1794-TB3TS*
1794-IE8H	FLEX 1/0 HART Enabled Analog 8 Input Module	8 single-ended		1794-TB3G or 1794-TB3

^ Do not exceed length of $30 \mathrm{~m}(100 \mathrm{ft})$ for signal cabling
Conformal coated versions of standard modules have the letter K in the last position of the catalog number, before the series designation. For more information, refer to the FLEX I/O Conformal Coating Brochure publication 1794-BR017.

FLEX I／O Analog Input Modules

Cat．No．	Input Signal Range	Accuracy Drift w／Temp．	External DC Supply Current，Nom	Power Dissipation，Max．	Thermal Dissipation， Max．
1794－IE8＊	$\begin{aligned} & \hline 4 \ldots 20 \mathrm{~mA} \\ & 0 \ldots 20 \mathrm{~mA} \\ & \pm 10 \mathrm{~V} \\ & 0 \ldots 10 \mathrm{~V} \end{aligned}$	Current Input：0．0407\％Full Scale ${ }^{\circ} \mathrm{C}$ Voltage Input：0．0428\％Full Scale $/{ }^{\circ} \mathrm{C}$	60 mA ＠ 24 V dc	3 W＠31．2V dc	10.2 BTU／hr＠31．2V dc
1794－IE8H	$4 \ldots 20 \mathrm{~mA}$	$0.05 \% /{ }^{\circ} \mathrm{C}$ of output signal range	295 mA ＠24V dc	3.9 W	$13.5 \mathrm{BTU} / \mathrm{hr}$
1794－IE12	$4 \ldots 20 \mathrm{~mA}$（user configurable） $0 . . .20 \mathrm{~mA}$（user configurable）	Current Input：0．004\％Full Scale $/{ }^{\circ} \mathrm{C}$ Voltage Input： 0.004% Full Scale $/{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 30 \mathrm{~mA} @ 24 \mathrm{Vdc} ; 45 \mathrm{~mA} @ \\ & 10.0 \mathrm{~V} \text { dc } \end{aligned}$	1.2 W＠31．2V dc； 1.1 W＠ $24 \mathrm{~V} \mathrm{dc} ; 0.9 \mathrm{~W} @ 10.0 \mathrm{~V}$ dc	－
1794－IF4I＊	$4 \ldots 20 \mathrm{~mA}$ $0 . . .20 \mathrm{~mA}$ $\pm 10 \mathrm{~V}$ 0．．．10V $\pm 5 \mathrm{~V}$ $0 . .5 \mathrm{~V}$	Current Input： 0.0038% Full Scale $/{ }^{\circ} \mathrm{C}$ Voltage Input： 0.0028% Full Scale $/{ }^{\circ} \mathrm{C}$	80 mA ＠ 24 V dc	2.0 W＠31．2V dc	6．9 BTU／hr＠31．2V dc
1794－IR8＊＊＊	1．．． 433 做		140 mA ＠24V dc	3 W＠31．2V dc	10．2 BTU／hr＠31．2V dc
1794－IRT8＊＊	$-40 \ldots+100 \mathrm{mV}$ dc for thermocouples $0 \ldots 325 \mathrm{mV}$ dc for RTDs $0 . . .500 \Omega$ for resistance range＊	－	85 mA ＠24V dc	3 W＠31．2V dc	10.2 BTU／hr＠ 31.2 V dc
1794－IT8＊＊敉	$\pm 76.5 \mathrm{mV}$ 桃		150 mA ＠24V dc	3 W＠31．2V dc	10.2 BTU／hr＠ 31.2 V dc
1794－IE8X0E4	$4 . . .20 \mathrm{~mA}$（user configurable） $0 . . .20 \mathrm{~mA}$（user configurable）	Current Input or Output： 0.004% Full Scale＠ $25^{\circ} \mathrm{C}$ Voltage Input or Output： 0.004% Full Scale＠ $25^{\circ} \mathrm{C}$	$\begin{aligned} & 140 \mathrm{~mA} @ 24 \mathrm{~V} \mathrm{dc} ; 280 \mathrm{~mA} \\ & @ 10.0 \mathrm{~V} \mathrm{dc} \end{aligned}$	3.0 W＠31．2V dc； 2.3 W＠ 24 V dc； $2.0 \mathrm{~W} @ 10.0 \mathrm{~V}$ dc	－
1794－OE8H	－	0.010% per ${ }^{\circ} \mathrm{C}$ of output signal range	255 mA ＠24V dc	6.1 W	20．8 BTU／hr
1794－IE4XOE2＊	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \\ & 0 \ldots .20 \mathrm{~mA} \\ & \pm 10 \mathrm{~V} \\ & 0 \ldots 10 \mathrm{~V} \end{aligned}$	Current Input： 0.0407% Full Scale $/{ }^{\circ} \mathrm{C}$ Voltage Input： 0.0428% Full Scale $/{ }^{\circ} \mathrm{C}$ Current Output：0．0069\％Full Scale $/{ }^{\circ} \mathrm{C}$ Voltage Output：0．0045\％Full Scale $/{ }^{\circ} \mathrm{C}$	70 mA ＠24V dc	4.0 W＠31．2V dc	13．6 BTU／hr＠31．2V dc
1794 IF2XOF2I＊	$4 . .20 \mathrm{~mA}$ $0 . . .20 \mathrm{~mA}$ $\pm 10 \mathrm{~V}$ $0 \ldots 10 \mathrm{~V}$ $\pm 5 \mathrm{~V}$ $0 . . .5 \mathrm{~V}$	Current Input：0．0038\％Full Scale $/{ }^{\circ} \mathrm{C}$ Voltage Input： 0.0028% Full Scale $/{ }^{\circ} \mathrm{C}$ Current Output：0．0025\％Full Scale $/{ }^{\circ} \mathrm{C}$ Voltage Output：0．0012\％Full Scale $/{ }^{\circ} \mathrm{C}$	150 mA ＠24V dc	3.3 W＠31．2V dc	11 BTU／hr＠31．2V dc

＊Each module＇s channel is individually selectable or as a group of four．
＊．For the accuracy calculation，refer to the module＇s user manual．

1794-IE8 24V dc Selectable Analog 8 Input Module

The 1794-IE8 is a voltage/current measurement module that works with a variety of input sensors to measure input voltage in $\pm 10 \mathrm{~V}$ range or input current in the 0 to 20 mA range. Each channel is individually configurable for the desired input range. Use the 1794 -IE8 with 2 -, 3 -, and 4 -wire input sensor field devices.

Only connect either a voltage input or a current input per channel, not both.
Use caution to prevent ground loops when using a common ground, since the channels are not isolated.

	1794-IE8
Current Input, Maximum Overload	32 mA , single channel, continuous
Voltage Input, Maximum Overload	30 V , single channel, continuous
Input Resolution	$\begin{aligned} & 12 \text { bits - Unipolar, } 11 \text { bits + sign - Bipolar } \\ & 5.13 \mu \mathrm{~A} / \mathrm{Cnt} \\ & 2.56 \mathrm{mV} / \mathrm{Cnt}-\text { Unipolar } \\ & 5.13 \mathrm{mV} / \mathrm{Cnt} \text { - Bipolar } \end{aligned}$
Input Impedance	Current Input: 238Ω Voltage Input: $100 \mathrm{k} \Omega$
Input Resistance	Current Input: 238Ω Voltage Input: $200 \mathrm{k} \Omega$
Data Format	16-bit 2's complement, left-justified
Input Conversion Type	Successive approximation
Input Conversion Rate	256μ all channels
Normal Mode Rejection Ratio	Current Input: $-3 \mathrm{~dB} @ 9 \mathrm{~Hz} ;-20 \mathrm{~dB} /$ decade -15.3 dB @ 50 Hz -16.8 dB @ 60 Hz Voltage Input: -3 dB @ $17 \mathrm{~Hz} ;-20 \mathrm{~dB} /$ decade -10 dB @ 50 Hz -11.4 dB @ 60 Hz
Calibration	None required
Step Response to 63\% of FS, Input	Current Input: 18.2 ms Voltage Input: 9.4 ms
Dimensions (HxWxD), Metric	$46 \times 94 \times 53 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in
Accuracy	Current Input: 0.20% Full Scale @ $25^{\circ} \mathrm{C}$ Voltage Input: 0.20% Full Scale @ $25^{\circ} \mathrm{C} *$

*Includes offset, gain, non-linearity and repeatability error terms

1794-IE8H HART Enabled Analog 8 Input Module

The 1794-IE8H is a HART enabled analog input module that works with HART enabled input sensors with input current in the 0 to 20 mA range. Use the 1794-IE8H with 2 or 3 wire tramsmitters. This module provides wire-off detection on a perchannel basis. The HART analog modules can only be used on ControlNet or EtherNet/IP networks with one HART field device per channel.

	1794-IE8H
Voltage Input, Maximum Overload	-
Current Input, Maximum Overload	-
Isolation Voltage	50V (continuous), Basic Insulation Type Routine tested at 850 V dc for 1 s, between field side and system No isolation between individual channels
Input Resolution	16 bits
Input Resistance	-
Data Format	Configurable
Input Conversion Type	-
Input Conversion Rate	$10 \mathrm{~ms}(50 \mathrm{~Hz}) / 8.33 \mathrm{~ms}(60 \mathrm{~Hz})$
Normal Mode Rejection Ratio	-
Step Response to 63% of FS, Input	80 ms to 99% of FS
Calibration	-
Dimensions (HxWxD), Metric	$46 \times 9475 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.95$ in
Resolution	16 bit unipolar 15 bit + bipolar
Accuracy	Current Input: 0.1% Full Scale @ $20{ }^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right)$

1794-IE12 24V dc Selectable Analog 12 Input Module

The 1794 -IE12 is a voltage or current measurement module that measures inupt voltage in a $\pm 10 \mathrm{~V}$ range or current in the 0-20 MA range. Each channel is individually configurable and the out-of-range notification is by channel.

	1794-IE12
Voltage Input, Maximum Overload	30 V continuous, single channel
Current Input, Maximum Overload	32 mA continuous, single channel
Isolation Voltage	50V (continuous), Basic Insulation Type Type tested at 850 V dc for 60 s , between field side and system No isolation between individual channels
Input Resolution	$320 \mu \mathrm{~V} / \mathrm{cnt}$ $0.641 \mu \mathrm{~A} / \mathrm{cnt}$
Input Resistance	-
Data Format	16 bit, 2's complement
Input Conversion Type	Successive Approximation
Input Conversion Rate	8.0 ms all channels
Normal Mode Rejection Ratio	Voltage/Current Terminal: $-3 \mathrm{~dB} @ 0.05 \mathrm{~Hz}$; -20 db /decade $-52 \mathrm{db} @ 50 \mathrm{~Hz} ;-54 \mathrm{db}$ @ 60 Hz Voltage/Current Terminal with Quick Step: -3 dB @ $1.5 \mathrm{~Hz} ;-20 \mathrm{db} /$ decade $-29 \mathrm{db} @ 50 \mathrm{~Hz} ;-31 \mathrm{db} @ 60 \mathrm{~Hz}$
Step Response to 63\% of FS, Input	Current or Voltage Input: 1.3 s (0.09 s with Quick Step)
Calibration	-
Dimensions (HxWxD), Metric	-
Dimensions (HxWxD), Imperial	-
Resolution	16 bit unipolar 15 bit + bipolar
Accuracy	Current Input: 0.1% Full Scale @ $25^{\circ} \mathrm{C}$ Voltage Input: 0.1% Full Scale @ $25^{\circ} \mathrm{C} *$

*Includes offset, gain, nonlinearity, and repeatability error terms.

1794-IF4I 24V dc Source Isolated Analog 4 Input Module

The 1794-IF4I is an input module with channel-to-channel isolation that works with a variety of input sensors to measure input voltage in $\pm 10 \mathrm{~V}$ range or input current in the 0 to 20 mA range. Each channel is individually configurable for the desired input range. Use the 1794-IF4I with 2-, 3 -, and 4 -wire input sensor field devices.

Only connect either a voltage input or a current input per channel, not both.

	1794-IF4\|
Voltage Input, Maximum Overload	30 V , single channel, continuous
Current Input, Maximum Overload	32 mA , single channel, continuous
Isolation Voltage	120 V (continuous, when used with $1794-\mathrm{TB} 2,-\mathrm{TB} 3$, -TB3S, -TB3T, or -TB3TS), Basic Insulation Type 250 (continuous, when used with $1794-\mathrm{TBN}$), Basic Insulation Type Tested to 1500Vac for 60s and 2550 Vdc for 1 s between channel to channel, channel to user, channel to system, and user power to system
Input Resolution	```16 bits - Unipolar, 15 bits + sign - Bipolar \(0.320 \mu \mathrm{~A} / \mathrm{Cnt}\) - Unipolar \(0.640 \mu \mathrm{~A} / \mathrm{Cnt}\) - Bipolar \(0.156 \mathrm{mV} / \mathrm{Cnt}\) - Unipolar \(0.313 \mathrm{mV} / \mathrm{Cnt}\) - Bipolar```
Input Resistance	Current Input: <100 $\Omega *$ Voltage Input: $>10 \mathrm{M} \Omega$
Data Format	2's complement 2's complement percent binary offset binary
Input Conversion Type	Sigma Delta
Input Conversion Rate	2.5/5.0/7.5 ms all channels
Normal Mode Rejection Ratio	-3 dB @ 12 Hz (300 Hz conversion rate) $-80.0 \mathrm{~dB} @ 50 \mathrm{~Hz}$ (300 Hz conversion rate)
Step Response to 63% of FS, Input	Current or Voltage Input: 1200 Hz conversion rate $=0.6 \mathrm{~ms}$ 600 Hz conversion rate $=6.7 \mathrm{~ms}$ 300 Hz conversion rate $=13.4 \mathrm{~ms}$ 150 Hz conversion rate $=26.7 \mathrm{~ms}$
Calibration	Factory calibrated
Dimensions (HxWxD), Metric	$46 \times 94 \times 53 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in
Resolution	16 bit unipolar 15 bit + bipolar
Accuracy	Current Input: 0.1% Full Scale @ $25^{\circ} \mathrm{C}$ Voltage Input: 0.1% Full Scale @ $25^{\circ} \mathrm{C}$ 事

*If 24 V dc is removed from the module, input resistance $=10 \mathrm{k} \Omega$.
*, Includes offset, gain, non-linearity and repeatability error terms.

1794-IR8 24V dc RTD Input Module

The 1794 -IR8 is a temperature-measuring module that accepts 2-, and 3 -wire RTDs. Use the 1794-IR8 in applications where channel fast-update rate is not required. If you need channel fast-update rates, use the 1794 -IRT8 module.

	1794-1R8
Input Resolution	16 bits across 435Ω
Normal Mode Rejection Ratio	60 dB @ 60 Hz for A/D filter cutoff @ 15 Hz
Sensors Supported	Resistance: 100Ω Pt $\mu=0.00385$ Euro $\left(-200 \ldots+870{ }^{\circ} \mathrm{C}\right)$ 100Ω Pt $\mu=0.003916$ U.S. $\left(-200 \ldots+630^{\circ} \mathrm{C}\right)$ $200 \Omega \operatorname{Pt} \mu=0.00385$ Euro $\left(-200 \ldots+630^{\circ} \mathrm{C}\right)$ $500 \Omega \operatorname{Pt} \mu=0.00385$ U.S. $\left(-200 \ldots+630^{\circ} \mathrm{C}\right)$ 100Ω Nickel $\mu=0.00618\left(-60 \ldots+250^{\circ} \mathrm{C}\right)$ 120Ω Nickel $\mu=0.00672\left(-60 \ldots+250^{\circ} \mathrm{C}\right)$ 200Ω Nickel $\mu=0.00618\left(-60 \ldots+250^{\circ} \mathrm{C}\right)$ 500Ω Nickel $\mu=0.00618\left(-60 \ldots+250^{\circ} \mathrm{C}\right)$ 10Ω Copper $\mu=0.00427\left(-200 \ldots+260^{\circ} \mathrm{C}\right)$
Data Format	Left justified 16-bit 2 's complement or offset binary
Settling Time	100% of final value available at system throughput rate
Accuracy*	Enhanced Mode (typical): 0.01% Full Scale (low humidity) without calibration Normal Mode (max): 0.05% Full Scale (low humidity) without calibration
Common Mode Rejection Ratio	-120 db @ 60 Hz -100 db @ 50 Hz with A/D filter cutoff @ 10 Hz
Common Mode Voltage	0 V between channels (common return)
System Throughput	Enhanced Mode: Programmable from $56 \mathrm{~ms} /$ channel to $650 \mathrm{~ms} /$ channel 650 ms (1 channel scanned) 2.925 s (8 channels scanned) Normal Mode: Programmable from $28 \mathrm{~ms} /$ channel to $325 \mathrm{~ms} /$ channel 325 ms (1 channel scanned) 2.6 s (8 channels scanned)
Settling Time	100% of final value available at system throughput rate
Open RTD Detection	Out of range upscale reading
Open Circuit Detection Type	Available at system throughput rate
Overvoltage Capability	$35 \mathrm{~V} \mathrm{dc}, 25 \mathrm{~V}$ ac continuous @ $25^{\circ} \mathrm{C}$ 250V peak transient
Channel Bandwidth	dc to $2.62 \mathrm{~Hz}(-3 \mathrm{~dB})$
RTD Excitation Current	$718.39 \mu \mathrm{~A}$
RFI Immunity	Error of $<1 \%$ of range at $10 \mathrm{~V} / \mathrm{m}, 27 \ldots 1000 \mathrm{MHz}$
Dimensions (HxWxD), Metric	$49 \times 94 \times 53 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in
Input Offset Drift with Temperature	$1.5 \mathrm{~m} \Omega /{ }^{\circ} \mathrm{C}$ max
Gain Drift with Temperature	Normal mode: $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. Enhanced mode: $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.

[^1]
1794-IR8 Derating Curve

Derating Curve

Safe operating area
The area within the curve represents the safe operating range for the module under various conditions of user supplied 24 V dc supply voltages and ambient temperatures.

1794-IRT8 24V dc Thermocouple/RTD Input Module

The 1794-IRT8 is a high-speed, high-accuracy temperature/mV measuring module that accepts thermcouple inputs, 2-, 3-, and 4-wire RTD inputs, and mV source inputs.

The 1794-IRT8 offers the following:

- wire-off, over-range, and under-range detection
- good common mode rejection
- usage with long thermocouple wiring
- effective in noisy environments
- usage with grounded or ungrounded thermocouples
- more stability with ambient temperature changes than with the 1794-IR8 and the 1794-IT8

Release of Series B version provides capability to work with grounded thermocouples
Use cold junction compensators (cat. no. 1794-CJC2) in thermocouple mode. Two cold junction compensators are shipped with the 1794-IRT8.

The 1794-IRT8 is a high-speed, high-accuracy temperature/mV measuring module that accepts thermcouple inputs, 2-, 3-, and 4-wire RTD inputs, and mV source inputs.

The 1794-IRT8 offers the following:

- wire-off, over-range, and under-range detection
- good common mode rejection
- usage with long thermocouple wiring
- effective in noisy environments
- usage with grounded or ungrounded thermocouples
- more stability with ambient temperature changes than with the 1794-IR8 and the 1794-IT8

Release of Series B version provides capability to work with grounded thermocouples
Use cold junction compensators (cat. no. 1794-CJC2) in thermocouple mode. Two cold junction compensators are shipped with the 1794-IRT8.

	1794-IRT8
Input Resolution	14 bits
Supported RTD Types	Resistance: 100Ω Pt $\mu=0.00385$ Euro $\left(-200 \ldots+870^{\circ} \mathrm{C}\right)$ 100Ω Pt $\mu=0.003916$ U.S. $\left(-200 \ldots+630^{\circ} \mathrm{C}\right)$ 200Ω Pt $\mu=0.00385$ Euro $\left(-200 \ldots+400^{\circ} \mathrm{C}\right)$ 200Ω Pt $\mu=0.003916$ U.S. $\left(-200 \ldots+400^{\circ} \mathrm{C}\right)$ 100Ω Nickel $\mu=0.00618\left(-60 \ldots+250^{\circ} \mathrm{C}\right)$ 120Ω Nickel $\mu=0.00672\left(-80 \ldots+320^{\circ} \mathrm{C}\right)$ 200Ω Nickel $\mu=0.00618\left(-60 \ldots+200^{\circ} \mathrm{C}\right)$ 10Ω Copper $\mu=0.00427\left(-200 \ldots+260^{\circ} \mathrm{C}\right)$
Supported Thermocouple Types	
Accuracy	0.05% of full range in mV mode with filtering selected Hardware only $=0.10 \%$ of full range in mV mode
Common Mode Rejection Ratio	-80 dB @ 5V peak-to-peak 50-60 Hz
Common Mode Input Range	$\begin{aligned} & \text { Series A: } \pm 4 \mathrm{~V} \\ & \text { Series B: } \pm 15 \mathrm{~V} \end{aligned}$
System Throughput	$\begin{aligned} & 7.4 \mathrm{~ms}-\mathrm{mV} \\ & 8.0 \mathrm{~ms}-\Omega-2 \text {-wire } \\ & 10.0 \mathrm{~ms}-\Omega-3 \text {-wire } \\ & 10.4 \mathrm{~ms}-\Omega \text { - } 4 \text {-wire } \\ & \left.8.0 \mathrm{~ms}-2 \text {-wire RTD (}{ }^{\circ} \mathrm{F}\right) \\ & 10.4 \mathrm{~ms}-4 \text {-wire RTD }\left({ }^{\circ} \mathrm{F}\right) \\ & 8.8 \mathrm{~ms}-2 \text {-wire RTD }\left({ }^{\circ} \mathrm{C}\right),\left({ }^{\circ} \mathrm{K}\right) \\ & 10.8 \mathrm{~ms}-4 \text {-wire RTD }\left({ }^{\circ} \mathrm{C}\right),\left({ }^{\circ} \mathrm{K}\right) \\ & 9.8 \mathrm{~ms}-3 \text {-wire RTD }\left({ }^{\mathrm{F}}\right) \\ & 10.0 \mathrm{~ms}-3 \text {-wire RTD }\left({ }^{\circ} \mathrm{C}\right),\left({ }^{\circ} \mathrm{K}\right) \\ & 8.0 \mathrm{~ms}-\text { Thermocouples }\left({ }^{\circ} \mathrm{F}\right) \\ & 8.8 \mathrm{~ms}-\text { Thermocouples }\left({ }^{\circ} \mathrm{C}\right),\left({ }^{\circ} \mathrm{K}\right) * \end{aligned}$
Open Circuit Detection Type	Series A: RTD and TC modes - Open Input - Module defaults to max value Series B: RTD mode - Open Input - Module defaults to max value Series B: TC mode - Open Input - Module defaults to min value
Excitation Current	$630 \mu \mathrm{~A}$
Overvoltage Capability	Series A: 7 V dc continuous @ $25^{\circ} \mathrm{C}$ Series B: 15 V dc continuous @ $25^{\circ} \mathrm{C}$
Open Input Detection Time	$0 \ldots 3.8 \mathrm{~s}$ for Series A revision D or earlier Immediate detection (max 2 scans) for Series A revision E or later immediate detection (max 2 scans) for Series B
*For max throughput short circuit all unused channels.	
	1794-IRT8
Cold Junction Compensation Range	$0 \ldots 70^{\circ} \mathrm{C}$ for firmware Series A revision D or earlier $-20 \ldots 100^{\circ} \mathrm{C}$ for firmware Series A revision E or later $-20 \ldots 100^{\circ} \mathrm{C}$ for firmware Series B
Cold Junction Compensation	A-B Cold Junction Compensator Kit, 1794-CJC2*
Data Format	${ }^{\circ}{ }^{\circ} \mathrm{C}$ (implied decimal point XXX.X) ${ }^{\circ} \mathrm{F}$ (implied decimal point XXX.X) ${ }^{\circ} \mathrm{K}$ (implied decimal point XXX.X) $-32767 \ldots+32767$ $0 \ldots 65535$ $0 \ldots 5000$ (Ω mode) (implied decimal point XXX.X) $-4000 \ldots+10000$ (mV mode) (implied decimal point XXX.XX)
RFI Immunity	-
Dimensions (HxWxD), Metric	$46 \times 94 \times 53 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in
Overall Drift with Temperature, Max.	Series A: $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of span Series B: $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of span

[^2]
1794-IT8 24V dc Thermocouple/mV Input Module

The 1794-IT8 module is a temperature/mV measuring module that accepts inputs from a variety of thermcouples and from the mV source in the range of $\pm 76.5 \mathrm{mV}$. Choose the 1794 -IT8 module when you need the following:

- A cost effective module.

Applications that don't require high accuracy or high speed.
Support for grounded or ungrounded thermocouples.
Use cold junction compensators (cat. no. 1794-CJC2) in thermocouple mode. Two cold junction compensators are shipped with the 1794-IT8 module. This module is suitable to work with grounded thermocouples, if certain guidelines are followed. Refer to the module's user manual for more information.

The FLEX I/O cold junction compensator kit, containing two compensators, is included with the 1794-IT8 modules. You can order additional compensators using the above catalog number.

	1794-IT8
Input Resolution	16 bits ($2.384 \mu \mathrm{~V}$ typical)
Supported Thermocouple Types	Type B: $300 \ldots 1800^{\circ} \mathrm{C}\left(572 \ldots 3272{ }^{\circ} \mathrm{F}\right)$ Type C: $0 \ldots 2315^{\circ} \mathrm{C}\left(32 \ldots 4199^{\circ} \mathrm{F}\right)$ Type E: $-270 \ldots 1000^{\circ} \mathrm{C}\left(-454 \ldots 1832{ }^{\circ} \mathrm{F}\right)$ Type J: $-210 \ldots 1200^{\circ} \mathrm{C}\left(-346 \ldots 2192{ }^{\circ} \mathrm{F}\right)$ Type K: $-270 \ldots 1372^{\circ} \mathrm{C}\left(-454 \ldots 2502{ }^{\circ} \mathrm{F}\right)$ Type N: $-270 \ldots 1300^{\circ} \mathrm{C}\left(-454 \ldots 2372{ }^{\circ} \mathrm{F}\right)$ Type R: $-50 \ldots 1768^{\circ} \mathrm{C}\left(-58 \ldots 3214^{\circ} \mathrm{F}\right)$ Type S: $-50 \ldots 1768^{\circ} \mathrm{C}\left(-58 \ldots . \ldots 214^{\circ} \mathrm{F}\right)$ Type $\mathrm{T}:-270 \ldots 400{ }^{\circ} \mathrm{C}\left(-454 \ldots .752{ }^{\circ} \mathrm{F}\right)$ Type TXK/XK $(\mathrm{L}):-200 \ldots 800^{\circ} \mathrm{C}\left(-328 \ldots 1472{ }^{\circ} \mathrm{F}\right)$
Data Format	16-bit 2's complement or offset binary (unipolar)
Accuracy*	With Filter (max): 0.025% Full Scale @ $24^{\circ} \mathrm{C}\left(\pm 0.5^{\circ} \mathrm{C}\right)$ Without Filter (max): 0.05% Full Scale @ $24^{\circ} \mathrm{C}\left(\pm 0.5^{\circ} \mathrm{C}\right)$
Common Mode Rejection Ratio	-115 dB @ $60 \mathrm{~Hz} ;-100 \mathrm{~dB}$ @ 50 Hz
Normal Mode Rejection Ratio	60 dB @ 60 Hz
Common Mode Input Range	$\pm 10 \mathrm{~V}$
System Throughput	325 ms (1 channel scanned), programmable to 28 ms 2.6 s (8 channels scanned), programmable to 224 ms
Settling Time	100% of final value available at system throughput rate
Open Circuit Detection Type	Out of range reading (upscale)
Open Input Detection Time	Available at system throughput rate
Overvoltage Capability	$35 \mathrm{~V} \mathrm{dc}, 25 \mathrm{~V}$ ac continuous @ $25^{\circ} \mathrm{C}$ 250V peak transient
Channel Bandwidth	$0 \ldots 2.62 \mathrm{~Hz}(-3 \mathrm{~dB})$
RFI Immunity	Error of $<1 \%$ of range at $10 \mathrm{~V} / \mathrm{m}, 27 \ldots 1000 \mathrm{MHz}$
Input Offset Drift with Temperature	$+6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
Gain Drift with Temperature	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max
Overall Drift with Temperature, Max.	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of span
Dimensions (HxWxD), Metric	$1.8 \times 3.7 \times 2.1 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$46 \times 94 \times 53$ in
Cold Junction Compensation Range	$0 \ldots 70{ }^{\circ} \mathrm{C}$
Cold Junction Compensation	A-B Cold Junction Compensation Kit, 1794-CJC2㭗

* This accuracy is based on the hardware of the module only. Refer to the user manual for the complete error calculation procedure.
*来Kit supplied with the module and contains 2 compensators.

1794-IT8 Derating Curve

Derating Curve

Safe operating area
The area within the curve represents the safe operating range for the module under various conditions of user supplied 24 V dc supply voltages and ambient temperatures.

1794-IE4XOE2 24V dc 4 Input/2 Output Analog Combo Module

The 1794 -IE 4 XOE 2 is a combination module with 4 inputs and 2 outputs. Inputs can be configured individually for different modes. Inputs accept signals from a variety of inputs sensors (2-, 3 -, and 4 -wire) in the range of $\pm 10 \mathrm{~V}$ or 0 to 20 mA . Outputs are also individually configurable for different modes. Outputs produce signals in the range of $\pm 10 \mathrm{~V}$ or 0 to 20 mA .

	1794-IE4X0E2
Calibration	None required
Input Conversion Type	Successive approximation
Input Conversion Rate	256μ all channels
Input Resolution	$\begin{aligned} & 12 \text { bits - Unipolar, } 11 \text { bits + sign - Bipolar } \\ & 5.13 \mu \mathrm{~A} / \mathrm{Cnt} \\ & 2.56 \mathrm{mV} / \mathrm{Cnt} \text { - Unipolar } \\ & 5.13 \mathrm{mV} / \mathrm{Cnt} \text { - Bipolar } \end{aligned}$
Data Format	16-bit 2's complement, left-justified
Step Response to 63\% of FS, Input	Current Input: 18.2 ms Voltage Input: 9.4 ms
Accuracy	Current Input: 0.20% Full Scale @ $25^{\circ} \mathrm{C}$ Voltage Input: 0.20% Full Scale @ $25^{\circ} \mathrm{C}$ Current Output: 0.425% Full Scale @ $25^{\circ} \mathrm{C}$ Voltage Output: 0.133% Full Scale @ $25^{\circ} \mathrm{C} *$
Accuracy Drift w/Temp.	Current Input: 0.0407% Full Scale $/{ }^{\circ} \mathrm{C}$ Voltage Input: 0.0428% Full Scale $/{ }^{\circ} \mathrm{C}$ Current Output: 0.0069% Full Scale $/{ }^{\circ} \mathrm{C}$ Voltage Output: 0.0045% Full Scale $/{ }^{\circ} \mathrm{C}$
Normal Mode Rejection Ratio	Current Input: -3 dB @ $9 \mathrm{~Hz} ;-20 \mathrm{~dB} /$ decade -15.3 dB @ 50 Hz $-16.8 \mathrm{~dB} @ 60 \mathrm{~Hz}$ Voltage Input: -3 dB @ $17 \mathrm{~Hz} ;-20 \mathrm{~dB} /$ decade -10 dB @ 50 Hz $-11.4 \mathrm{~dB} @ 60 \mathrm{~Hz}$
Input Impedance	Current Input: 238Ω Voltage Input: $100 \mathrm{k} \Omega$
Voltage Input, Maximum Overload	30 V , single channel, continuous
Output Resolution	$\begin{aligned} & 12 \text { bits + sign } \\ & 5.13 \mu \mathrm{~A} / \mathrm{Cnt} \\ & 2.56 \mathrm{mV} / \mathrm{Cnt} \end{aligned}$
Data Format	16-bit 2's complement, left-justified
Output Conversion Type	Pulse Width Modulation
Output Conversion Rate	1.024 ms all channels
Step Response to 63% of FS, Output	Current or Voltage Output: 24 ms
Dimensions (HxWxD), Metric	$46 \times 94 \times 53 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in
Current Load on Voltage Output, Max.	3 mA
Resistive Load on Current Output	$15 \ldots 750 \Omega$

*Includes offset, gain, non-linearity and repeatability error terms

1794-IE8XOE4 24V dc 8 Input/4 Output Analog Combo Module

The 1794-IE8XOE 4 is a combination module with 8 inputs and 4 outputs. Inputs can be configured individually for different modes, as can outputs. Inputs accept signals from 2,3 , and 4 wire input sensors in the ranges of $\pm 10 \mathrm{~V}$ or 0 to 20 mA . Outputs produce signals in the range of $\pm 10 \mathrm{~V}$ or 0 to 20 mA .

	1794-EE8X0E4
Calibration	None required
Input Conversion Type	Successive Approximation
Input Conversion Rate	8.0 ms all channels
Input Resolution	stbUCString::convert: Character with charcode: "913" met
Data Format	16 bit, 2's complement
Step Response to 63% of FS, Input	Current or Voltage Input: 1.3 s (0.09 s with Quick Step)
Accuracy	Current Input or Output: 0.1% Full Scale @ $25^{\circ} \mathrm{C}$ Voltage Input or Output: 0.1% Full Scale @ $25^{\circ} \mathrm{C} *$
Accuracy Drift w/Temp.	Current Input or Output: 0.004% Full Scale @ $25^{\circ} \mathrm{C}$ Voltage Input or Output: 0.004% Full Scale @ $25^{\circ} \mathrm{C}$
Normal Mode Rejection Ratio	Voltage/Current Terminal: -3 dB @ $0.05 \mathrm{~Hz} ;-20 \mathrm{db} /$ decade $-52 \mathrm{db} @ 50 \mathrm{~Hz} ;-54 \mathrm{db} @ 60 \mathrm{~Hz}$ Voltage/Current Terminal with Quick Step: $-3 \mathrm{~dB} @ 1.5 \mathrm{~Hz}$; $-20 \mathrm{db} /$ decade $-29 \mathrm{db} @ 50 \mathrm{~Hz} ;-31 \mathrm{db} @ 60 \mathrm{~Hz}$
Input Impedance	Voltage Input: Greater than 1 megohm Current Input: Less than 100 ohms璘
Voltage Input, Maximum Overload	30 V , single channel, continuous
Output Resolution	stbUCString::convert: Character with charcode: "913" met
Data Format	16 bit, 2's complement
Output Conversion Type	Digital-to-Analog Converter
Output Conversion Rate	-
Step Response to 63\% of FS, Output	$\sim 70 \%$ 1st convert; 96\% 2nd convert; 100\% 3rd convert
Dimensions (HxWxD), Metric	$94.0 \times 94.0 \times 53.3 \mathrm{~mm}$ (with module installed in base)
Dimensions (HxWxD), Imperial	$3.7 \times 3.7 \times 2.1$ in (with module installed in base)
Current Load on Voltage Output, Max.	3 mA max
Resistive Load on Current Output	$0 \ldots 750 \Omega$ over full power supply range

*Includes offset, gain, non-linearity and repeatability error terms

* ${ }^{*}$ If 24 V dc is removed from the module, input resistance $=10 \mathrm{~K}$ ohms

1794-IF2XOF2I 24V dc 2 Input/2 Output Isolated Analog Combo Module

The 1794-IF2XOF2I is a combination module with 2 inputs and 2 outputs with isolated, individually-configurable channels. Inputs accept signals from a variety of input sensors ($2-, 3-$, and 4 -wire) in the range of $\pm 10 \mathrm{~V}$ or $\pm 20 \mathrm{~mA}$. Outputs produce signals in the range of $\pm 10 \mathrm{~V}$ or 0 to 20 mA .

Only connect either a voltage input or a current input per channel, not both.

	1794-IF2X0F21
Calibration	Factory calibration
Input Conversion Type	Sigma Delta
Isolation Voltage	120 V continuous (when used with $1794-\mathrm{TB} 3,1794-\mathrm{TB} 3 \mathrm{~S}, 1794-\mathrm{TB} 2$, 1794-TB3T, or 1794-TB3TS) 250V continuous (when used with -TBN) Tested at 1500 V ac for 60 s and 2550 V dc for 1 s , channel to channel, I/0 to system.
Input Conversion Rate	2.5/5.0/7.5 ms all channels
Input Resolution	16 bits - Unipolar, 15 bits + sign - Bipolar $0.320 \mu \mathrm{~A} / \mathrm{Cnt}$ - Unipolar $0.640 \mu \mathrm{~A} / \mathrm{Cnt}$ - Bipolar $0.156 \mathrm{mV} / \mathrm{Cnt}$ - Unipolar $0.313 \mathrm{mV} / \mathrm{Cnt}$ - Bipolar
Data Format	2's complement 2's complement percent binary offset binary
Step Response to 63% of FS, Input	Current or Voltage Input: 1200 Hz conversion rate $=0.6 \mathrm{~ms}$ 600 Hz conversion rate $=6.7 \mathrm{~ms}$ 300 Hz conversion rate $=13.4 \mathrm{~ms}$ 150 Hz conversion rate $=26.7 \mathrm{~ms}$
Accuracy	Current Input: 0.1% Full Scale @ $25^{\circ} \mathrm{C}$ Voltage Input: 0.1% Full Scale @ $25^{\circ} \mathrm{C}$ Current Output: 0.1% Full Scale @ $25^{\circ} \mathrm{C}$ Voltage Output: 0.1% Full Scale @ $25^{\circ} \mathrm{C} *$
Accuracy Drift w/Temp.	Current Input: 0.0038% Full Scale $/{ }^{\circ} \mathrm{C}$ Voltage Input: 0.0028% Full Scale $/{ }^{\circ} \mathrm{C}$ Current Output: 0.0025% Full Scale $/{ }^{\circ} \mathrm{C}$ Voltage Output: 0.0012% Full Scale $/{ }^{\circ} \mathrm{C}$
Normal Mode Rejection Ratio	-3 dB @ 12 Hz (300 Hz conversion rate) -80.0 dB @ 50 Hz (300 Hz conversion rate)
Voltage Input, Maximum Overload	30 V , single channel, continuous
Output Resolution	15 bits + sign $0.656 \mu \mathrm{~A} / \mathrm{Cnt}$ $0.320 \mathrm{mV} / \mathrm{Cnt}$
Data Format	2's complement 2's complement percent binary offset binary
Output Conversion Type	Digital to analog converter
Output Conversion Rate	2.5/5.0 ms
Dimensions (HxWxD), Metric	$46 \times 94 \times 53 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in
Current Load on Voltage Output, Max.	3 mA
Resistive Load on Current Output	$0 \ldots 750 \Omega$

FLEX I/O Analog
 Output Modules

Cat. No.	Number of Outputs	Output Signal Range	External DC Supply Current, Nom.	Power Dissipation, Max.	Thermal Dissipation, Max.
1794-0E4	4 single-ended with selectable channel configuration	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \\ & 0 \ldots 20 \mathrm{~mA} \\ & \pm 10 \mathrm{~V} \\ & 0 \ldots 10 \mathrm{~V} \end{aligned}$	70 mA @ 24V dc*	4.5 W @ 31.2V dc	15.3 BTU/hr @ 31.2V dc
1794-OE8H	8 single-ended isolated with selectable channel configuration	$4 \ldots .20 \mathrm{~mA}$ (user configurable) $0 . . .20 \mathrm{~mA}$ (user configurable)	255 mA @ 24V dc	6.1 W	20.8 BTU/hr
1794-OE12	12 single-ended isolated with selectable channel configuration	0 mA output until module is configured 4... 20 mA (user configurable) $0 . . .20 \mathrm{~mA}$ (user configurable)	$\begin{aligned} & 320 \mathrm{~mA} @ 24 \mathrm{~V} \mathrm{dc} ; 720 \mathrm{~mA} \\ & @ 10.0 \mathrm{v} d \mathrm{c} \end{aligned}$	4.0 W @ 31.2V dc; 4.3 W @ $24 \mathrm{~V} \mathrm{dc} ; 4.0 \mathrm{~W} @ 10.0 \mathrm{~V}$ dc	-
1794-OF4I	4 isolated with selectable channel configuration	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \\ & 0 \ldots 20 \mathrm{~mA} \\ & \pm 10 \mathrm{~V} \\ & 0 \ldots 10 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & 0 \ldots . .5 \mathrm{~V} \end{aligned}$	210 mA @ 24V dc	4.7 W @ 31.2V dc	$16 \mathrm{BTU} / \mathrm{hr} @ 31.2 \mathrm{~V} \mathrm{dc}$
1794-IE8XOE4	4 single-ended isolated with selectable channel configuration	-	140 mA @ 24V dc; 280 mA @ 10.0 V dc	3.0 W @ 31.2V dc; 2.3 W @ $24 \mathrm{~V} \mathrm{dc} ; 2.0 \mathrm{~W} @ 10.0 \mathrm{~V}$ dc	-
1794-IE4XOE2	2 single-ended with selectable channel configuration	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \\ & 0 \ldots 20 \mathrm{~mA} \\ & \pm 10 \mathrm{~V} \\ & 0 \ldots 10 \mathrm{~V} \end{aligned}$	70 mA @ 24V dc	4.0 W @ 31.2V dc	13.6 BTU/hr @ 31.2V dc
1794-IF2XOF2I	2 isolated outputs with selectable channel configuration	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \\ & 0 \ldots 20 \mathrm{~mA} \\ & \pm 10 \mathrm{~V} \\ & 0 \ldots 10 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & 0 \ldots . .5 \mathrm{~V} \end{aligned}$	150 mA @ 24V dc	3.3 W @ 31.2V dc	11 BTU/hr @ 31.2V dc

*Not including outputs.

1794-OE4 24V dc Selectable Analog 4 Output Module

The 1794-0E4 module has 4 output, non-isolated, individually-configurable channels. Outputs are capable of driving the field devices that require a voltage of $\pm 10 \mathrm{~V}$ or a current of 0 to 20 mA .

	1794-0E4
Output Resolution	$\begin{aligned} & 12 \text { bits + sign } \\ & 5.13 \mu \mathrm{~A} / \mathrm{Cnt} \\ & 2.56 \mathrm{mV} / \mathrm{Cnt} \end{aligned}$
Output Resolution	$\begin{aligned} & 12 \text { bits + sign } \\ & 5.13 \mu \mathrm{~A} / \mathrm{Cnt} \\ & 2.56 \mathrm{mV} / \mathrm{Cnt} \end{aligned}$
Data Format	16-bit 2's complement, left-justified
Output Conversion Type	Pulse Width Modulation
Output Conversion Rate	1.024 ms all channels
Step Response to 63\% of FS, Output	Voltage Output: 24 ms
Current Load on Voltage Output, Max.	3 mA
Resistive Load on Current Output	$15 \ldots 750 \Omega$
Accuracy	Current Output: 0.425% Full Scale @ $25^{\circ} \mathrm{C}$ Voltage Output: 0.133% Full Scale @ $25^{\circ} \mathrm{C} *$.
Accuracy Drift w/Temp.	Current Output: 0.0069% Full Scale $/{ }^{\circ} \mathrm{C}$ Voltage Output: 0.0045% Full Scale $/{ }^{\circ} \mathrm{C}$
Calibration	None required
Isolation Voltage	50 V continuous, $\mathrm{I} / 0$ to system Tested to 850 V dc for $1 \mathrm{~s}, \mathrm{I} / 0$ to system (No isolation between individual channels)
Power Dissipation, Max.	4.5 W @ 31.2V dc
Thermal Dissipation, Max.	15.3 BTU/hr @ 31.2V dc
Dimensions (HxWxD), Metric	$46 \times 94 \times 53 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in
Wire Size	$0.34 \ldots 2.5 \mathrm{~mm}^{2}$ (22...12 AWG) solid or stranded shielded copper wire rated at $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ or greater 1.2 mm (3/64 in.) insulation max
Wiring Category	2 - on signal ports 2 - on power ports*

[^3]
1794-OF4I 24V dc Source Isolated Analog 4 Output Module

The 1794-0F4I modules provides 4 isolated outputs for 2-, 3 -, and 4 -wire output devices that use voltage in the range of $\pm 10 \mathrm{~V}$ or 0 to 20 mA current.

	1794-0F4\|
Output Resolution	15 bits + sign $0.656 \mu \mathrm{~A} / \mathrm{Cnt}$ $0.320 \mathrm{mV} / \mathrm{Cnt}$
Isolation Voltage	120 V continuous (when used with $1794-\mathrm{TB} 2,-\mathrm{TB} 3,-\mathrm{TB} 3 \mathrm{~S},-\mathrm{TB} 3 \mathrm{~T}$, or TB3TS) 250 V continuous (when used with 1794 -TBN) Tested to 1500 V ac for 60 s and 2550 V dc for 1 s , channel to channel, I/0 to system
Output Signal Range	$4 \ldots 20 \mathrm{~mA}$ $0 . . .20 \mathrm{~mA}$ $\pm 10 \mathrm{~V}$ $0 . .10 \mathrm{~V}$ $\pm 5 \mathrm{~V}$ $0 . .5 \mathrm{~V}$
Data Format	2's complement 2's complement percent binary offset binary
Output Conversion Type	Digital to analog converter
Output Conversion Rate	2.5/5.0 ms
Step Response to 63\% of FS, Output	Current or Voltage Output: $<25 \mu \mathrm{~s}$
Current Load on Voltage Output, Max.	3 mA
Resistive Load on Current Output	$0 \ldots 750 \Omega$
Accuracy	Current Output: 0.1% Full Scale @ $25^{\circ} \mathrm{C}$ Voltage Output: 0.1% Full Scale @ $25^{\circ} \mathrm{C} *$
Accuracy Drift w/Temp.	Current Output: 0.0025% Full Scale $/{ }^{\circ} \mathrm{C}$ Voltage Output: 0.0012% Full Scale $/{ }^{\circ} \mathrm{C}$
Calibration	Factory calibrated
Power Dissipation, Max.	4.7 W @ 31.2V dc
Thermal Dissipation, Max.	$16 \mathrm{BTU} / \mathrm{hr} @ 31.2 \mathrm{~V} \mathrm{dc}$
Dimensions (HxWxD), Metric	$46 \times 94 \times 53 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in
Wire Size	$0.34 \ldots 2.5 \mathrm{~mm}^{2}$ (22... 12 AWG) solid or stranded shielded copper wire rated at $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ or greater 1.2 mm ($3 / 64 \mathrm{in}$.) insulation max
Wiring Category	2 - on signal ports 3 - on power ports*

*Includes offset, gain, non-linearity and repeatability error terms.
*Use this Conductor Category information for planning conductor routing. Refer to Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1.

1794-OE8H HART Enabled Analog 8 Ouput Module

The $1794-0 \mathrm{E} 8 \mathrm{H}$ is a HART enabled analog output module that works with HART enabled field devices that use current in the 0 to 20 mA range. Use with 2 or 3 wire devices. This module provides wire-off detection on a per-channel basis. This module can only be used on ControlNet or EtherNet/IP networks. One HART field device per channel.

	1794-0E8H
Output Resolution	13 bits
Isolation Voltage	50 V (continuous), Basic Insulation Type Routine tested at 850 V dc for 1 s , hetween field side and system No isolation between individual channels
Output Signal Range	$4 \ldots .20 \mathrm{~mA}$ (user configurable) $0 \ldots 20 \mathrm{~mA}$ (user configurable)
Data Format	Configurable
Output Conversion Type	-
Output Conversion Rate	10 ms for all channels
Step Response to 63% of FS, Output	13 ms to 99% of $\mathrm{FS} / 115 \mathrm{~ms}$ during HART comms
Current Load on Voltage Output, Max.	$0 \ldots . \ldots 2 \mathrm{~mA}$ @ $>15 \mathrm{~V}$
Resistive Load on Current Output	$0 \ldots 680 \Omega$ @ $22 \mathrm{~mA}, 0 \ldots 770 \Omega$ @ 20 mA
Accuracy	0.1% Full Scale @ $20{ }^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right)$
Accuracy Drift w/Temp.	0.010% per ${ }^{\circ} \mathrm{C}$ of output signal range
Calibration	-
Power Dissipation, Max.	6.1 W
Thermal Dissipation, Max.	$20.8 \mathrm{BTU} / \mathrm{hr}$
Dimensions (HxWxD), Metric	$46 \times 94 \times 75 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.95$ in
Wire Size	$0.34 \ldots 2.5 \mathrm{~mm}{ }^{2}(22 \ldots .12$ AWG) solid or stranded shielded copper wire rated at $75^{\circ} \mathrm{C}\left(167{ }^{\circ} \mathrm{F}\right)$ or greater $1.2 \mathrm{~mm}(3 / 64$ in.) insulation max
Wiring Category	$2-$ on signal ports $2-$ on power ports

*Use this Conductor Category information for planning conductor routing. Refer to Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1.

1794-OE12 24V dc Selectable Analog 12 Output Module

1794-OE12 module is a High Density analog output module, capable of providing current in the range of 0 to 20 mA or voltage in the range of $+/-10 \mathrm{~V}$, depending on the user configuration. Out of Range status bit exists for each channel.

	1794-0E12
Output Resolution	stbUCString::convert: Character with charcode: "913" met
Isolation Voltage	50V (continuous), Basic Insulation Type Type tested at 850 V dc for 60 s , between field side and system No isolation between individual channels
Output Signal Range	0 mA output until module is configured $4 \ldots 20 \mathrm{~mA}$ (user configurable) $0 \ldots 20 \mathrm{~mA}$ (user configurable)
Data Format	Configurable
Output Conversion Type	Digital-to-Analog Converter
Output Conversion Rate	-
Step Response to 63\% of FS, Output	~70\% 1st convert; 96\% 2nd convert; 100\% 3rd convert
Current Load on Voltage Output, Max.	3 mA max
Resistive Load on Current Output	$0 \ldots 750 \Omega$ over full power supply range
Accuracy	Current Output: 0.1% Full Scale @ $25^{\circ} \mathrm{C}$ Voltage Output: 0.1% Full Scale @ $25^{\circ} \mathrm{C}$
Accuracy Drift w/Temp.	Current Output: 0.004% Full Scale ${ }^{\circ} \mathrm{C}$ Voltage Output: 0.004% Full Scale $/{ }^{\circ} \mathrm{C}$
Calibration	None required
Power Dissipation, Max.	4.0 W @ 31.2V dc; 4.3 W @ 24V dc; 4.0 W @ 10.0V dc
Thermal Dissipation, Max.	-
Dimensions (HxWxD), Metric	$94.0 \times 94.0 \times 53.3 \mathrm{~mm}$ (with module installed in base)
Dimensions (HxWxD), Imperial	$3.7 \times 3.7 \times 2.1$ in (with module installed in base)
Wire Size	$0.34 \ldots 2.5 \mathrm{~mm}^{2}$ ($22 \ldots 12$ AWG) solid or stranded shielded copper wire rated at $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ or greater 1.2 mm (3/64 in.) insulation max
Wiring Category	2 - on signal ports 2 - on power ports*

*Use this Conductor Category information for planning conductor routing. Refer to Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1.

FLEX I/O Counter Modules

Ask these three questions when deciding on which counter module would best fit your application:

What is the application?
What field devices, signal levels, and signal type are being connected to the counter module?

What is the desired counter module?

Cat. No.	Description	Applications	Network Compatibility	Number of Inputs Number of Outputs	External DC Supply Current, Nom.	Power Dissipation, Max.	Thermal Dissipation, Max.
1794-IJ2	FLEX I/O 24V dc 2 Input Frequency Module	Any application requiring rotational control including turbine generators, motors, drives, gears, shafts, etc.	All networks supported by FLEX I/0	$2-2$	$\begin{aligned} & 220 \mathrm{~mA} @ 19.2 \mathrm{~V} \\ & \mathrm{dc} ; 180 \mathrm{~mA} @ 24 \mathrm{~V} \\ & \mathrm{dc} ; 140 \mathrm{~mA} @ \\ & 31.2 \mathrm{Vc} \end{aligned}$	4.6 W @ 31.2V dc	$\begin{aligned} & 15.6 \text { BTU/hr @ } \\ & 31.2 \mathrm{~V} \mathrm{dc} \end{aligned}$
1794-VHSC	FLEX I/O 24 V dc 2 Channel Very High Speed Counter Module	Typical applications include packaging, material handling, flow monitoring, cut-to-length, motor speed control and monitoring.	Supported on ControlNet (1794ACN15, -ACNR15) or EtherNet I/P (1794-AENT) networks only. Also supported on FlexLogix.	$2-2$	$\begin{aligned} & 100 \mathrm{~mA} @ 24 \mathrm{~V} \\ & \mathrm{dc*} \end{aligned}$	5 W @ 31.2V dc	$\begin{aligned} & \text { 17.1 BTU/hr @ } \\ & 31.2 \mathrm{~V} \text { dc } \end{aligned}$
1794-ID2	FLEX I/O 24V dc 2 Input Pulse Counter Module	Typical applications include quantity counting, positioning, and speed calculations.	All networks supported by FLEX I/0	2 Inputs Only	$\begin{aligned} & 150 \mathrm{~mA} @ 12 \mathrm{Vdc} \\ & 75 \mathrm{~mA} @ 24 \mathrm{~V} \text { dc } \end{aligned}$	5 W @ 26.4V dc	$\begin{aligned} & \text { 17.1 BTU/hr @ } \\ & 26.4 \mathrm{~V} \mathrm{dc} \end{aligned}$
1794-IP4	FLEX I/O 12/24V dc 4 Input Pulse Counter Module	Typical applications include counting pulses from flow meters and density meters. Quantity counting and speed calculations are examples of other applications.		4 Inputs Only	$\begin{aligned} & 150 \mathrm{~mA} @ 12 \mathrm{Vdc} \\ & 75 \mathrm{~mA} @ 24 \mathrm{~V} \mathrm{dc} \end{aligned}$	5 W @ 26.4V dc	$\begin{aligned} & \text { 17.1 BTU/hr @ } \\ & 26.4 \mathrm{~V} \mathrm{dc} \end{aligned}$

*Does not represent power required to supply the inputs or outputs.

	Conformal Coated Description
$1794-$ IJ2K	ANSI / ISA-S71.04-1985, Class G1, G2, and G3 environments CEI IEC 6065A-4 Class 1 and 2 environments UL 746E

1794-IJ2 24V dc 2 Input Frequency Module

The 1794-IJ2 is essentially a tachometer with the capability of reporting frequency, acceleration, and direction. Outputs are activated by alarms. Input devices range from magnetic pickup to flowmeters, to incremental encoders to proximity detectors. This intelligent I/O module is designed to perform high-speed frequency algorithms. The module provides 2 frequency inputs, 2 gate inputs, and 2 outputs. The frequency inputs are capable of accepting frequencies up to 32 KHz . The module accepts and returns binary data.
The 1794-IJ2 measures frequency over a user-specified time interval. A frequency calculation can start before the time interval has elapsed, if a user-specified number of frequency input pulses have occurred.
The module's primary target is high-speed, accurate frequency measurement. As such, a high-speed internal clock is synchronized with the frequency input to count over a user-selected sampling time or a user-defined number of frequency input pulses. Power to the module is supplied from the external power supply. All power for input devices (24 V dc) is supplied by the $\mathrm{I} / 0$ module. Outputs are used to set alarms depending on the input conditions.

The 1794-II2 module accepts the following frequency inputs:

- 24 V dc IEC1 + proximity switch as defined by standard IEC 1131-2
- 24 V dc contact switch with wire off capability
- 500 mV ac magnetic pickup
- 50 mV ac magnetic pickup
- 6 V ac vortex
- 3V ac vortex

The 1794-IJ2 module accepts the following gate inputs:

- 24 V dc IEC1+ proximity switch as defined by standard IEC 1131-2
- 24 V dc contact switch
- 500 mV ac magnetic pickup
- 50 mV ac magnetic pickup

Simplified Schematic for Frequency Input Channel 0

A-0 thru A-7 are screw
terminals on the terminal base

Simplified Schematic for Outputs Channel 0

Screw terminals on the terminal base

Customer supplied power, ranging from +10 V to +31.2 V dc, is connected internally to the power output transistor. When an output is turned on, current flows into the source out of the drain, through the load connected to the ground of the customer supply (customer return). Diode D6 protects the power output transistors from damage due to inductive loads. Output Q1 is a thermally protected FET and will turn off @ 3A (approximately). After an output goes into thermal shutdown, you must fix the cause of the shutdown and toggle the outputs ON and OFF to reenergize the output. RT1 protects D6 and Q1 if power supply polarity is reversed.

	1794-IJ2
Processing Time	$\leq 4 \mathrm{~ms}$
Input Frequency, Max.	$1 \ldots 32 \mathrm{kHz}$ w/sine wave; $1 \ldots 32 \mathrm{kHz}$ w/square wave input
Frequency Value, Max.	32,767 or $3,276.7$ (dependent on range)
Input Pulse Width	$20 \mu \mathrm{~s} \mathrm{~min}$
Voltage, On-State Input, Min.	$10 \mathrm{~V}(24 \mathrm{~V}$ IEC +1 proximity, encoder input or switch inputs)
Voltage, On-State Input, Nom.	24 V dc
Voltage, On-State Input, Max.	Limited to isolated 24V dc power supply
Current, On-State Input, Min.	2.0 mA
Current, On-State Input, Nom.	9.0 mA
Current, On-State Input, Max.	10.0 mA
Voltage, Off-State Input, Max.	5.0 V dc on 24 V dc IEC1+ Terminal
Current, Off-State Input, Max.	1.5 mA into 24 V dc IEC1+ Terminal
Wire-Off Detection	0.4 mA for proximity, encoder, or contact switch with 50 kW shunt resistor
	$>5 \mathrm{k} \Omega$ for 50 mV extended magnetic pickup
$>5 \mathrm{k} \Omega$ for 500 mV magnetic pickup	
Impedance, Frequency Input	$>10 \mathrm{k} \Omega$ for 3 V vortex flowmeter
$\gg 10 \mathrm{k} \Omega$ for 6 V vortex flowmeter	
$>2.5 \mathrm{k} \Omega$ for 24 V dc IEC1+ proximity or encoder input	
$2.5 \mathrm{k} \Omega$ for 24 V dc contact switch input	
Impedance, Gate Input	$>5 \mathrm{k} \Omega$ for 50 mV extended magnetic pickup
$>5 \mathrm{k} \Omega$ for 500 mV magnetic pickup	
$>2.5 \mathrm{k} \Omega$ for 24 V dc IEC1+ proximity or encoder input	
$>2.5 \mathrm{k} \Omega$ for 24 V dc contact switch input	

*Current Limited: All outputs can be on simultaneously without derating

1794-VHSC 24V dc 2 Channel Very High Speed Counter Module

A counter module has two incremental quadrature encoder interfaces each with three inputs (A, B, and Z). Each input module has \pm inputs for connection to pulse transmitters with complementary or non-complementary signals.
The counter can count pulses of one or two pulse trains for up/down counting and detection of a selectable number of edges (X1, X2, X4). Each of the two counters has an upper limit of 1 MHz , a 24 -bit counter register, a preset register, and a latch register.
Power to the module is supplied from an external 24 V power supply. The 1794 -VHSC has two outputs that can be configured for overlapping, multiple windows, and/or pulse width modulation.

When using ControlNet systems, this module must be used with 1794 -ACN15 or ACNR15 Series B or later ControlNet adapters. When using EtherNet/IP systems, this module must be used with a 1794-AENT/A module with firmware at revision 2.xx or later, along with a FlexLogix local controller.

	1794-VHSC
Input Groups	2 groups of A/A, B/B, and Z/Z pairs with 5 V dc or $15 \ldots 24 \mathrm{~V}$ dc terminations
Input Frequency, Max.	1.0 MHz counter and encoder X1 (no filters) 500 kHz encoder X2 (no filters) 250 kHz encoder X4 (no filters)
Voltage, On-State Input, Min.	5 V dc terminations: $>2.6 \mathrm{~V}$ dc $15 \ldots 24 \mathrm{~V}$ dc terminations: $>12.5 \mathrm{~V}$ dc
Voltage, On-State Input, Max.	5 V dc terminations: $\pm 6 \mathrm{~V}$ $15 \ldots 24 \mathrm{~V}$ dc terminations: Refer to derating curve
Voltage, Off-State Input, Min.	5 V dc terminations: $\leq 1.25 \mathrm{~V}$ dc $15 \ldots 24 \mathrm{~V}$ dc terminations: $\leq 1.8 \mathrm{~V}$ dc
Current, On-State Input, Min.	$>5 \mathrm{~mA}$
Current, Off-State Input, Max.	$\leq 0.250 \mathrm{~mA}$
Input Filter Selections	5: Off, $10 \mu \mathrm{~s}, 100 \mu \mathrm{~s}, 1.0 \mathrm{~ms}, 10.0 \mathrm{~ms}$ per A/B/Z group
Output Control	Outputs can be tied to 8 compare windows
Output Supply Voltage Range	$5 \ldots 7 \mathrm{Vdc}$ or $10 \ldots 31 \mathrm{~V} \mathrm{dc}$
Leakage Current, Off-State Output, Max	$\leq 0.3 \mathrm{~mA}$
Voltage Drop, On-State Output, Max.	5 V operation -0.5 A $12 \ldots .24 \mathrm{~V}$ operation -1.0 A
Current, On-State Output, Max.	5 V operation -0.5 A $12 \ldots 24 \mathrm{~V}$ operation -1.0 A
Current per Output Pair, Max.	5 V operation -0.9 A $12 \ldots 24 \mathrm{~V}$ operation -4.0 A
Short Circuit Current	5 V operation -0.9 V dc @ $0.5 \mathrm{~A} *$ $12 \ldots .24 \mathrm{~V}$ operation -0.9 V dc @ 1.0 A
Dimensions (HxWxD), Metric	$45.7 \times 94.0 \times 53.3 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in
Output Delay Time, OFF to ON	$25 \mu \mathrm{~s}$ (load dependent)
Output Delay Time, ON to OFF	$150 \mu \mathrm{~s}$ (load dependent)

*Outputs are short circuit protected and turned off until power is cycled.

1794-VHSC Derating Curve

Derating Curve

The area within the curve represents the safe operating range for the module under various conditions of user supplied 24 V dc supply voltages and ambient temperatures. This includes all possible mounting positions, including inverted horizontal.

1794-ID2 24V dc 2 Input Pulse Counter Module

The 1794-ID2 module is a 2 -channel counter used in applications where pulse counting is required. Typical input devices include quadrature incremental encoders with or without reference and/or gate function and pulse transmitters. You can use one or two pulse trains.

	1794-ID2
Input Pulse Width	Each signal condition must be stable for at least 2 ms to be recognized
Input Groups	2 groups of A, B, Z, G inputs
Counting Frequency (kHz), Max.	100
Cable Type	Input: Belden 8761
Wiring Category	$2 *$
Conductor Length, Max	$1000 \mathrm{ft} \mathrm{(304.8m)}$
Dimensions (HxWxD), Metric	$46 \times 94 \times 53 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1 \mathrm{in}$
Input Signal Range	$3 \mathrm{~mA} @ 6 \mathrm{~V} \mathrm{dc}$ $9 \mathrm{~mA} @ 12 \mathrm{~V} \mathrm{dc}$ $15 \mathrm{~mA} \mathrm{@} \mathrm{24V} \mathrm{dc}$

*Use this conductor category information for planning conductor routing. Refer to publication 1770-4.1, Industrial Automation Wiring and Grounding Guidelines.

1794-IP4 12/24V dc 4 Input Pulse Counter Module

The pulse counter modules perform high-speed scaling, calculation operations for various industrial applications. Some sample applications include:

- quantity counting
- speed calculation
- flow monitoring

All the input devices for the pulse counter module should be able to provide the input signal of 6 V amplitude. The 1794 -IP4 has a 6 V minimum threshold for an input 0 N condition and a maximum 3 V threshold for an input OFF condition. The region between 3 V and 6 V is a transitional one and therefore requires input signals to pass cleanly through that region, otherwise module operation cannot be guaranteed.

	1794-IP4
Counting Frequency (kHz), Max.	$100 *$
Input Frequency, Max.	100
Input Signal Range	$3 \mathrm{~mA} @ 6 \mathrm{~V} \mathrm{dc}$ $9 \mathrm{~mA} @ 12 \mathrm{~V} \mathrm{dc}$ $15 \mathrm{~mA} @ 24 \mathrm{~V} \mathrm{dc}$
Dimensions (HxWxD), Metric	$46 \times 94 \times 53 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.1$ in
Overflow	Max. period is 65 ms when 1 MHz internal clock selected; Max. period $=6.5 \mathrm{~ms}$ when 10 MHz internal clock selected

*Each signal condition must be stable for at least 2 ms to be recognized.

Step 3 - Select:

- the appropriate terminal base unit for your module and system

Selecting a Terminal Base Unit

Each FLEX I/O module requires a terminal base unit that snaps onto the DIN Rail to the right of the I/O adapter. The terminal bases provide terminal connection points for $I / 0$ wiring and plug together to form the backplane. They are available with screw or spring terminations.

General Specifications

Cat. No. ${ }^{\text {* }}$	Description	Purpose
1794-TB2	FLEX I/O 2-Wire Cage-Clamp Terminal Base Unit	A generic version of the 1794-TB3 below
1794-TB3	FLEX I/O 3-Wire Cage-Clamp Terminal Base Unit	Primarily intended for use with input modules when using 3 -wire input proximity switches - can also be used with output modules
1794-TB3S	FLEX I/0 3-Wire Spring-Clamp Terminal Base Unit	A spring clamp version of the cage clamp 1794-TB3 above - provides faster, simpler wire installation
1794-TB32	FLEX I/O 32-Point Cage-Clamp Terminal Base Unit	A 32-point version of the 1794-TB3 to be used with 32-point digital modules and 1794- IB16D
1794-TB32S	FLEX I/0 32-Point Spring-Clamp Terminal Base Unit	A spring clamp version of the 1794-TB32
1794-TB3G	FLEX I/O 3-Wire Grounded CageClamp Terminal Base Unit	A screw clamp terminal base unit with individual grounding used with certain analog modules
1794-TB3GS	FLEX I/O 3-Wire Grounded SpringClamp Terminal Base Unit	A spring clamp version of the 1794-TB3G
1794-TB3T	FLEX I/O Cage-Clamp Temperature Terminal Base Unit	Required with the 1794 -IT8 module (when used in thermocouple mode) —also provides chassis ground connections for the 1794-IR8 and analog modules
1794-TB3TS	FLEX I/O SpringClamp Temperature Terminal Base Unit	A spring clamp version of the 1794-TB3T
1794-TBKD	Proposed Product: FLEX I/O Cage-Clamp Terminal Base Unit	A spring clamp version of the 1794-TB3T
1794-TBN	FLEX I/O Screw- Clamp Terminal Base Unit	Provides screw terminals to accept larger gauge wires plus cover for I/O wiring
1794-TBNF*	FLEX I/O ScrewClamp Fused Terminal Base Unit	Provides eight $5 \times 20 \mathrm{~mm}$ fuses, screw terminals, plus a cover for I/0 wiring — shipped with fuses for the 1794-0A8 module; can be used to fuse the 1794-0M8 and -0w8 modules with a replacement fuse (see the installation instructions)

*Contains eight $5 \times 20 \mathrm{~mm}$ fuses (one for each even-numbered terminal - 0 through 14 on row B). Shipped with $1.6 \mathrm{~A}, 250 \mathrm{~V}$
ac Slow Blow fuses suitable for 1794-OA8 ac output module. Refer to individual installation instructions for fusing
recommendations for other modules. Littelfuse PN23901.6, A-B PN94171304, SAN-O PNSD6-1.6A
*) solation Voltage, Channel to Channel is determined by the inserted module.

Conformal coated versions of standard modules have the letter K in the last position of the catalog number, before the series designation.

	Conformal Coated Description
1794-TB3K	ANSI / ISA-S71.04-1985, Class G1, G2, and G3 environments
1794-TB3GK	CEI IEC 6065A-4 Class 1 and 2 environments
1794-TBNK	UL 746E

The following table illustrates the recommended FLEX I/O terminal base unit(s) for each module. Many terminal base units can be used with most modules, but auxiliary terminal strips may be required.

FLEX $/$／P Product	Cat．No．	Terminal Base Unit
120 Vac Input Modules	1794－IA8	1794－TBN，1794－TB2，1794－TB3，1794－TB3S，1794－TBKD＊．
	1794－IA8I	1794－TBN，1794－TB2，1794－TB3，1794－TB3S，1794－TBKD敉
	1794－IA16	1794－TB3，1794－TB3S，1794－TBN＊＊＊＊＊＊＊＊）
220 V ac Input Module	1794－IM8	1794－TBN桃
120 V ac Output Modules	1794－0A8	1794－TBNF，1794－TB2，1794－TB3，1794－TB3S，1794－TBN，1794－TBKD
	1794－0A8I	1794－TBNF，1794－TB2，1794－TB3，1794－TB3S，1794－TBN，1794－TBKD
	1794－0A16	1794－TB3，1794－TB2，1794－TB3S，1794－TBN，1794－TBKD ${ }^{\text {束§ }}$
220V ac Output Module	1794－0M8	1794－TBNF，1794－TBN莍
24 V dc Input Modules	1794－IB8	1794－TB3，1794－TB3S 篓
	1794－IB16	1794－TB3，1794－TB3S䄻
	1794－IB16D	1794－TB32，1794－TB32S敉
	1794－IB32	1794－TB32，1794－TB32S敉
	1794－IV16	1794－TB2，1794－TB3，1794－TB3S，1794－TBKD ${ }_{\text {束 }}$
24 V dc Input／Output Modules	1794－IB10x0B6	1794－TB3，1794－TB3S敉
	1794－IB16X0B16P	1794－TB32，TB32S絭
48 V dc Input Module	1794－IC16	1794－TB3，1794－TB38笽
24 V dc Output Modules	1794－0B8	1794－TB2，1794－TB3，1794－TB3S，1794－TBKD乗
	1794－0B8EP	1794－TB3，1794－TB2，1794－TB3S，1794－TBN，1794－TBKD＊
	1794－OB16	1794－TB2，1794－TB3，1794－TB3S，1794－TBKD粯
	1794－OB16D	1794－TB3，1794－TB3S，1794－TBKD ${ }^{\text {敉 }}$
	1794－0B16P	1794－TB2，1794－TB3，1794－TB3S，1794－TBKD＊
	1794－OB32P	1794－TB32，1794－TB32S事
	1794－0V16	1794－TB3，1794－TB3S噒
	1794－0V16P	1794－TB3，1794－TB3S粉
48 V dc Output Module	1794－0C16	1794－TB3，1794－TB2，1794－TB3S，1794－TBKD＊
Relay Module	1794－0W8	1794－TBNF，1794－TBN，1794－TB2，1794－TB3，1794－TB3S，1794－TBKD楽
24 V dc Analog Input Modules	1794－IE8	1794－TB3，1794－TB2，1794－TB3S，1794－TB3T，1794－TB3TS薬
	1794－IF4I	1794－TB3，1794－TB2，1794－TB3S，1794－TB3T，1794－TB3TS，1794－TBN橉
	1794－IR8	1794－TB3，1794－TB2，1794－TB3S，1794－TB3T，1794－TB3TS䈫
	1794－IRT8	1794－TB3G，1794－TB3GS补
	1794－1T8	1794－TB3T，1794－TB2，1794－TB3，1794－TB3S，1794－TB3TS乗＊
24 V dc Analog Input／Output Modules	1794－IE4XOE2	1794－TB3，1794－TB2，1794－TB3S，1794－TB3T，1794－TB3TS䉿
	1794－IF2XOF2I	1794－TB3，1794－TB2，1794－TB3S，1794－TB3T，1794－TB3TS，1794－TBN橉
24 V dc Analog Output Modules	1794－0E4	1794－TB3，1794－TB2，1794－TB3S，1794－TB3T，1794－TB3TS，1794－TBN楽
	1794－0F4I	
Counter Modules	1794－IJ2	1794－TB3G，1794－TB3GS䉤
	1794－VHSC	
	1794－ID2	1794－TB3，1794－TB3S，1794－TBN，1794－TBNF承 ${ }^{\text {d }}$
	1794－IP4	1794－TB3，1794－TB3S，1794－TBN，1794－TBNF楽號
SCANport Module	1203－FB1	1203－FB1

＊Recommended terminal base is in bold text
＊Recommended terminal base is in bold text
\ddagger Auxiliary terminal strips are required when using the $1794-$ TBN for the 1794－IA16 and 1794－IA16．
§Auxiliary terminal strips are required when using the 1794－TBN for the 1794－OA16 and 1794－IA16．
4 You can use a 1794－TB2，1794－TB3，or 1794－TB3S for mV inputs only．
For use with 1794－ACN15，1794－ANCR15，and 1794－AENT only．
HAuxiliary terminal strips are required when using the 1794 －TBN or 1794 －TBNF for this catalog number
Publication 1794－SG002C－EN－P－October 2007

General Specifications

Cat. No. ${ }^{\text {a }}$	Connections	Ternination Type	Used in Applications	Current Capacity, Max.	Dimensions (HxWxD), Metric Dimensions (HxWxD), Imperial	Wire Size	Wiring Category	Certifications
1794-TB2	$16 \mathrm{I} / 0 ; 18$ common; $2+\mathrm{V}$		Up to $132 \mathrm{Vac} / 156 \mathrm{~V}$ dc	10	$\begin{aligned} & 94 \times 94 \times 69 \mathrm{~mm} \\ & 3.7 \times 3.7 \times 2.7 \mathrm{in} \end{aligned}$	22... 12 AWG ($0.34 \mathrm{~mm}^{2}$... 2.5 mm^{2}) stranded copper wire rated at $75^{\circ} \mathrm{C}$ or higher $3 / 64$ in (1.2 mm) insulation max.	$2 \ddagger$	UL, CSA, CE: Class I Division 2 certified Groups A, B, C, D certified Class I Zone 2 Group IIC certified
1794-TB3	$16 \mathrm{I} / 0 ; 18$ common; 18 +V							
1794-TB3S								
1794-TB32	$32 \mathrm{I} / 0 ; 8$ common; $8+\mathrm{V}$		Up to 31.2 Vdc				Module	
1794-TB32S							dependent \ddagger	
1794-TB3G	36 I/0; 2 common; 2 +V; 10 chassis ground							
1794-TB3GS							$2 \ddagger$	
1794-TB3T	16 I/O; 10 common; 4 +V; 8 chassis ground; 2 sets of CJC to be used with temperature modules		Up to $132 \mathrm{Vac} / 156 \mathrm{~V}$ dc				Module dependent \ddagger	
1794-TB3TS							$2 \ddagger$	
$\frac{1794-\mathrm{TBN}}{\text { 1794-TBNF* }}$	$16 \mathrm{I} / 0 ; 2$ common; 2 + ${ }^{\text {榓 }}$		$264 \mathrm{Vac} / \mathrm{dc}$				Module dependent \ddagger	

*Contains eight $5 \times 20 \mathrm{~mm}$ fuses (one for each even-numbered terminal - 0 through 14 on row B). Shipped with 1.6 A, 250 V ac Slow Blow fuses suitable for 1794 -OA8 ac output module. Refer to individual installation instructions for fusing recommendations for other modules. Littelfuse PN23901.6, A-B PN94171304, SAN-O PNSD6-1.6A.
粼solation Voltage, Channel to Channel is determined by the inserted module. \ddagger Use this conductor category information for planning conductor routing. Refer to publication 1770-4.1, "Industrial Automation Wiring and Grounding Guidelines."

Step 2 - Select:

- I/O modules

Selecting FLEX Ex I/O Modules

FLEX Ex follows a producer/consumer model for remote I/O. Input modules produce data for the system. Controllers, output modules, and intelligent modules produce and consume data. The producer/consumer model multicasts data. This means that multiple nodes can consume the same data at the same time from a single device.

FLEX Ex I/0 modules offer 4 through 16 I/O each. You can plug together a maximum of eight FLEX Ex I/O modules with a FLEX Ex I/0 adapter, for a maximum of 128 I/0 per assembly.

Mix and match digital and analog I/O to meet your application needs.

Digital I/O Modules

Digital I/O modules have digital I/O circuits that interface to on/off sensors (pushbottons and limit switches) and actuators (motor starters, pilot lights, and annunciators).

These outputs are controlled by the PLC controller while the inputs control the state of corresponding bits in the PLC.

Features

- Modules detect, indicate, and report the following faults:
- open input or output field devices or wiring
- shorted output field devices
- shorted input or output wiring
- Selectable input filter times from <1 to 33 ms .
- LED for each channel indicating status of:
- corresponding input device
- output signal

Cat. No.	Description	Number of Inputs	Number of Outputs	Terminal Base Unit
1797-IBN16	16 pt Non-Isolated NAMUR Input Module	16	-	
$1797-$ OB4D	24 V dc 4 pt Non-Isolated Source Output Module	-	4	$1797-\mathrm{TB} 3,1797-\mathrm{TB} 3 \mathrm{~S}$

1797-IBN16 16 pt Non-Isolated NAMUR Input Module

- Fault detection, fault bits in data table and LED (per channel) blinking red (1 Hz)
- Lead brekage defeat on four-channel group basis via module DIP switch selection
- Fault detection can be disabled via data table
- Programmable digital input filtering 1... 33 ms (OFF to ON and ON to OFF)
- All modules updated to flexbus $\leq 500 \mu \mathrm{~s}$
- Compatible with NAMUR sensors and dry contacts

	1797-IBN16
Number of Inputs	16
Input Type	DIN19234, NAMUR compatible
Current, On-State Input, Min.	2.1 mA
Current, Off-State Input, Max.	1.2 mA
Hysteresis	0.2 mA
Input Frequency, Max.	1000 Hz
Input Pulse Width	> $500 \mu \mathrm{~s}$, on or off
Load Voltage, Max.	$\mathrm{U} / \mathrm{V}=7.5 \mathrm{Vdc}$
Short Circuit Current	7.5 mA
Short Circuit Threshold Current	$>6 \mathrm{~mA}$
Lead Breakage Threshold Current	$<0.35 \mathrm{~mA}$
Input Delay Time, OFF to ON	$1 \mathrm{~ms}, 2 \mathrm{~ms}, 3 \mathrm{~ms}, 5 \mathrm{~ms}, 9 \mathrm{~ms}, 17 \mathrm{~ms}, 33 \mathrm{~ms} *$
Input Delay Time, ON to OFF	$1 \mathrm{~ms}, 2 \mathrm{~ms}, 3 \mathrm{~ms}, 5 \mathrm{~ms}$, $9 \mathrm{~ms}, 17 \mathrm{~ms}, 33 \mathrm{~ms}$ 桃
Intrinsically Safe Input Type	EEx ia IIB/IIC T4, AEx ia IIC T4, Class I, II, III Division 1 Groups A...G T4
Intrinsically Safe Input Characteristics	16 pin male and female FlexBus connector: $\mathrm{Ui} \leq 5.8 \mathrm{~V}$ dc Ii $\leq 400 \mathrm{~mA}$ Li $=$ Negligible $\mathrm{Ci}=$ Negligible
Noxious Gas Exposure	Tested to severity level G3, ISA-S71.04-1985
FLEX Ex Power Consumption (W) at 24 V	2.8
Power Dissipation	2.8 W
Dimensions (HxWxD), Metric	$46 \times 94 \times 75 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.95$ in
Weight, Metric	0.2 kg
Thermal Dissipation, Max.	9.6 BTU/hr

*1 ms default - selectable through output image table (see "Setting Input Filter Times").

* 1 * ms default - selectable through output image table.

1797-OB4D 24V DC 4 pt Non-Isolated Source Output Module

- 4 output channels referenced to a single supply
- Yellow LED to indicate output state, output ON = LED ON
- Fault indication, signal to the backplane and LED (per channel) blinking red for fault
- Output wire-off detection
- Output wire-off detection on per channel basis via module data bit
- Electronically short-circuit protected, fault reported to controller
- All channels updated from the backplane every 2 ms
- Output fault state programmable

	1797-OB4D
Number of Outputs	4
Output Load Range	$30 \ldots 5000 \Omega$
Fault Detection	Fault bits in data table and LED (per channel) blinking red (1 Hz)
Protection	Lead break, overload, short circuit
Output Delay Time, OFF to ON, Max.	$\leq 1.2 \mathrm{~ms}$
Output Delay Time, ON to OFF, Max.	$\leq 1.2 \mathrm{~ms}$
Intrinsically Safe Output Type	EEx ia IIB/IIC T4, AEx ia IIC T4, Class I, II, III Division 1 \& 2 Groups A...G T4
Intrinsically Safe Output Characteristics	16 pin male and female FlexBus connector: $\mathrm{Ui} \leq 5.8 \mathrm{~V} \mathrm{dc}$ $\mathrm{Ii} \leq 400 \mathrm{~mA}$ $\mathrm{Li}=\mathrm{Negligible}$ $\mathrm{Ci} \leq 1.35 \mu \mathrm{~F}$
Noxious Gas Exposure	$\mathrm{Tested} \mathrm{to} \mathrm{severity} \mathrm{level} \mathrm{G3}, \mathrm{ISA-S71.04-1985}$
FLEX Ex Power Consumption (W) at 24 V	7.5
Power Dissipation	5 W
Dimensions (HxWxD), Metric	$46 \times 94 \times 75 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.95$ in
Weight, Metric	0.2 kg
Thermal Dissipation, Max.	$17.07 \mathrm{BTU} / \mathrm{hr}$

1797-0B4D Output Voltage/Current Capability

Choose analog I/O modules when you need:

- Configurable channels allow the module to be used with a variety of sensors.
- On-board scaling eliminates the need to scale the data in the controller. Controller processing time and power are preserved for more important tasks, such as I/O control, communications, or other user-driven functions.
- On-line configuration. Modules can be configured in the RUN mode using the programming software or the control program. This allows you to change configuration while the system is operating. For example, the input filter for a particular channel could be changed, or a channel could be disabled based on a batch condition.
- Over- and under-range detections and indications eliminates the need to test values in the control program, saving valuable processing power of the controller. In addition, since alarms are handled by the module, the response is faster and only a single bit needs to be monitored to determine if an error condition has occurred.
- Ability to direct output device operation during an abnormal condition. Each channel of the output module can be individually configured to hold its last value or assume a user-defined value on either a run-to-program or run-to-fault condition. This feature allows you to set the condition of your analog devices, and therefore your control process, which may help to ensure a reliable shutdown.
- Selectable input filters allows you to select from several different filter frequencies for each channel that best meets the performance needs of your application based on environmental limitations. Lower filter settings provide greater noise rejection and resolution. Higher filter settings provide faster performance.
- Selectable response to broken input sensor. This feature provides feedback to the controller that a field device is not connected or operating properly. This allows you to specify corrective action based on the bit or channel condition.

Cat. No.	Description	Number of Inputs	Number of Outputs	Terminal Base Unit
1797-IE8	8 pt 16 bit Single-Ended Non-Isolated Analog Input Module			
1797-IE8H	8 pt 16 bit Single-Ended Non-Isolated Analog Input Module with HART capability	8		
1797-IE8NF	8 pt 16 bit Single-Ended Non-Isolated Analog Input Module with Noise Filter			
1797-IRT8	8 pt 16 bit Non-Isolated RTD Thermocouple/mV Input Module		$1797-$ TB3, 1797-TB3S	
1797-OE8	8 pt 13 bit Single-Ended Non-Isolated Analog Output Module		8	
1797-OE8H	8 pt 16 bit Single-Ended Non-Isolated Analog Input Module with HART capability	-		

FLEX Ex I/O Analog Input Modules

1797-IE8, -IE8H (HART), and -IE8NF (With Noise Filter) 8 pt 16 Bit Single-Ended Non-Isolated Analog Input Modules

- Eight single-ended input channels referenced to a single common
- 3 -wire input for 2 - and 3 -wire transmitters
- Functional data: normal input input current $=4 \ldots . .20 \mathrm{~mA}$, full-current range
0 ... 22 mA to allow for over and underrange indication
- Wire-off detection, signal to the backplane and LED (per channel) blinking red for fault
- Wire-off detection on per channel basis via module data bits
- Input filter cutoff programmable
- Resolution: 16 bits
- Accuracy: 0.1\%
- The 1797 -IE8 is typically used to act on change-of-state and high-speed applications. It is not compatible with HART handheld devices.
- The 1797-IE8NF has additional hardware filtering that damps out spurious signals and can be used for slower changing, steady-state processes. It has slower sampling than the 1797 -IE8 (100 ms versus 1 ms). It is compatible with HART handheld devices.
- The 1797 -IE8H is similar to the 1797 -IE8NF with real time data table updates. It also supports pass-through of HART commands as unscheduled ControlNet messages. It is compatible with FDT software packages.

	1797-IE8	1797-IE8H	1797-IE8NF
Input Resolution	16 bits	16 bits	16 bits
Input Signal Range	$0 \ldots . .20 \mathrm{~mA}$	$0 \ldots . .20 \mathrm{~mA}$	$0 \ldots . .20 \mathrm{~mA}$
Transfer Characteristics, Accuracy	0.1% of output signal range at $20^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right)$	0.1% of output signal range at $20^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right)$	0.1% of output signal range at $20^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right)$
Transfer Characteristics, Temperature Drift	$0.005 \% /{ }^{\circ} \mathrm{C}$ of output signal range	$0.05 \% /{ }^{\circ} \mathrm{C}$ of output signal range	$0.005 \% /{ }^{\circ} \mathrm{C}$ of output signal range
Functional Data Range	$\begin{aligned} & >15 \mathrm{~V} @ 22 \mathrm{~mA} \\ & >21.5 \mathrm{~V} @ 0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & >17 \mathrm{~V} @ 22 \mathrm{~mA} \\ & >23 \mathrm{~V} @ 0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & >15 \mathrm{~V} @ 22 \mathrm{~mA} \\ & >21.5 \mathrm{~V} @ 0 \mathrm{~mA} \end{aligned}$
Data Format	Configurable	Configurable	Configurable
Step Response to 99% of Full Scale	4 ms	80 ms	80 ms
Update Time, Module from Adapter	$200 . .1600 \mu s$	200... $1600 \mu \mathrm{~s}$	200... 1600 ¢
Noxious Gas Exposure	Tested to severity level G3, ISA-S71.04-1985	Tested to severity level G3, ISA-S71.04-1985	Tested to severity level G3, ISA-S71.04-1985
FLEX Ex Power Consumption (W) at 24 V	7.5	7.1	7.5
Power Dissipation	5.2 W	5.2 W	5.2 W
Thermal Dissipation, Max.	17.75 BTU/hr	17.75 BTU/hr	17.75 BTU/hr
Dimensions (HxWxD), Metric	$46 \times 94 \times 75 \mathrm{~mm}$	$46 \times 94 \times 75 \mathrm{~mm}$	$46 \times 94 \times 75 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.95$ in	$1.8 \times 3.7 \times 2.95$ in	$1.8 \times 3.7 \times 2.95$ in
Weight, Metric	0.2 kg	0.2 kg	0.2 kg
Intrinsically Safe Input Type	$\begin{aligned} & \text { Uo } \leq 23.7 \mathrm{~V} \\ & \text { Io } \leq 93.5 \mathrm{~mA} \\ & \text { Po } \leq 555 \mathrm{~mW} \end{aligned}$ EEx ia IIB/IIC (CENELEC) AEx ia IIC (US) Ex ia IIC (Canada) Class I, Zone 0, Groups IIC, IIB, IIA Class I, Division 1, Groups A, B, C, D Class II, Division 1, Groups E, F, G Class III, Division 1	$\begin{aligned} & \mathrm{Uo} \leq 24.4 \mathrm{~V} \\ & \mathrm{Io} \leq 92.5 \mathrm{~mA} \\ & \mathrm{Po} \leq 565 \mathrm{~mW} \end{aligned}$ EEx ia IIB/IIC T4	$\begin{aligned} & \mathrm{Uo} \leq 23.7 \mathrm{~V} \\ & \mathrm{Io} \leq 93.5 \mathrm{~mA} \\ & \mathrm{Po} \leq 555 \mathrm{~mW} \end{aligned}$ EEx ia IIB/IIC (CENELEC) AEx ia IIC (US) Ex ia IIC (Canada) Class I, Zone 0, Groups IIC, IIB, IIA Class I, Division 1, Groups A, B, C, D Class II, Division 1, Groups E, F, G Class III, Division 11
Intrinsically Safe Input Characteristics	16 pin male and female FlexBus connector: $\mathrm{Ui} \leq 5.8 \mathrm{~V}$ dc Ii $\leq 400 \mathrm{~mA}$ Li $=$ Negligible $\mathrm{Ci} \leq 1.35 \mu \mathrm{~F}$	16 pin male and female FlexBus connector: $\mathrm{Ui} \leq 5.8 \mathrm{~V}$ dc Ii $\leq 400 \mathrm{~mA}$ Li $=$ Negligible $\mathrm{Ci} \leq 1.35 \mu \mathrm{~F}$	16 pin male and female FlexBus connector: $\mathrm{Ui} \leq 5.8 \mathrm{~V}$ dc li $\leq 400 \mathrm{~mA}$ Li $=$ Negligible $\mathrm{Ci} \leq 1.35 \mu \mathrm{~F}$

HART Interface Modules

FLEX and FLEX Ex HART analog modules (IE8H and OE8H) are ideal for use in applications that need connection with FDT (Field Device Tool) compatible asset management software, such as Rockwell Software FieldCare HART Communication bundle or Endress + Hauser Fieldcare. For HART Device Type Management (DTM) programs and drivers, go to http://www.ab.com/io, and select Configurations Files, DTM files for HART.

- FLEX HART analog modules can be used on ControlNet or EtherNet/IP. The FLEX Ethernet adapter requires firmware v3.1 or later, which is flash upgradeable, to support these modules.
- Each HART field device is wired to its own input or output channel:
- 8 single-ended channels does not support multi-drop 2 or 3 wire devices
- For use with FlexLogix, the modules must be used on a distributed rail with a ControlNet adapter and not on a local rail.
- HART commands cand be transmitted by unscheduled message:
- sample RLL subroutines are available.
currently limited to one instance of RLL subroutine per module, one channel at a time.

1797-IRT8 8 pt 16 Bit Non-Isolated RTD Thermocouple/mV Input Module

- input channels referenced to a single common
- RTD mode
- 2 -, 3 -, and 4 -wire connection
- sensor lead breakage and short circuit detection all 4 leads
—measuring resistance 0 to 500Ω
—accuracy: 0.1% of span at $20^{\circ} \mathrm{C}$, filter cutoff $<1 \mathrm{~Hz}$
- mV mode
—input voltage -40 to 100 mV differential sensing
- sensor breakage detection
- thermocouple mode
—types B, E, J, K, TXK/XK (L), N, R, S, T
- cold junction compensation (CJC)
—external reference junction (programmable)
-sensor breakage detection
—accuracy: 0.1% of span, filter cutoff $<1 \mathrm{~Hz}$
—accuracy of CJC: $\pm 1 \mathrm{C} / \mathrm{K}$

	1797-IRT8
Input Type	Suitable for Pt 100, Pt200, Ni 100, Ni120, Ni200, 10Cu RTD, Thermocouple Type B, E, J, K, N, R, S, T, XK/XK (L) Configuration via internal bus
Input Signal Range	$\begin{aligned} & 0 \ldots 500 \Omega \\ & -40 \ldots 100 \mathrm{mV} \\ & \text { TC } \\ & \text { RTD } \end{aligned}$
Settling Time	8 ms to 99% of final value (mV mode, ${ }^{\circ} \mathrm{F}$ thermocouple)
Open RTD Detection	Out of range upscale reading
Lead Resistance Compensation	$<15 \Omega$ total
Transfer Characteristics, Accuracy	RTDs: 0.1% of span @ $20^{\circ} \mathrm{C}$, filter cutoff $<1 \mathrm{~Hz}$ Thermocouples: 0.1% of span @ $20^{\circ} \mathrm{C}$, filter cutoff $<1 \mathrm{~Hz}$
Transfer Characteristics, Temperature Drift	Cold junction compensation $=+1^{\circ} \mathrm{C}$ $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (primary range)
Data Organization	Overrange Alarm - Individually for each channel Lead Breakage Alarm - Individually for each channel Fault State - Individually for each channel (includes overrange, lead breakage and short circuit) Sensor Mode RTD 2, 3, or 4 -wire - Common to groups of 4 channels (ch $0-3$, ch 4-7) TC Sensor Type (e.g. TC, Type B, E, J..., RTD or mV) - Common to groups of 4 channels (ch 0-3, ch 4-7) Internal Reference Junction (TC mode) - Common to all channels ($0^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 30^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}$ selectable
Noxious Gas Exposure	Tested to severity level G3, ISA-S71.04-1985
FLEX Ex Power Consumption (W) at 24 V	1.6
Power Dissipation	1.6 W
Thermal Dissipation, Max.	$5.46 \mathrm{BTU} / \mathrm{hr}$
Dimensions (HxWxD), Metric	$46 \times 94 \times 75 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.95$ in
Weight, Metric	0.2 kg
Intrinsically Safe Input Characteristics	16 pin male and female FlexBus connector: $\mathrm{Ui} \leq 5.8 \mathrm{~V}$ dc Ii $\leq 400 \mathrm{~mA}$ Li $=$ Negligible $\mathrm{Ci} \leq 1.35 \mu \mathrm{~F}$

FLEX Ex I/O Analog Output Modules

1797-OE8 and -OE8H (HART) 8 pt 13 Bit SingleEnded Non-Isolated Analog 4 Output Module

- Eight dual-ended output channels referenced over sense resistors to a single common
- Functional data:
normal output
current $=4 \ldots . .20 \mathrm{~mA}$, full current range $=0 \ldots 22 \mathrm{~mA}$ to allow for over- and under-range indication
- Output wire-off detection, LED (per channel) blinking red for fault, threshold <2 mA
- Output wire-off detection on per channel basis via module data bits
- All channels updated to the backplane every $\leq 4 \mathrm{~ms}$
- Resolution: 13 bits
- Accuracy: 0.1\%
- One power supply loop for one module
- Output fault state programmable
- The 1797-0E8 can be used in digital mode for low energy digital field devices.
- The 1797-0E8H is similar to the 1797-0E8 with real time data table updates. It also supports pass-through of HART commands as unscheduled ControlNet messages. It is compatible with FDT software packages.

	1797-0E8	1797-0E8H
Output Resolution	13 bits	13 bits
Transfer Characteristics, Accuracy	0.1% of output signal at $20^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right)$	0.1% of output signal at $20^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right)$
Transfer Characteristics, Temperature Drift	0.010\%/C of output signal range	$0.010 \% / \mathrm{C}$ of output signal range
Output Load Range	$\begin{aligned} & 0 \ldots 500 \Omega @ 22 \mathrm{~mA} \\ & >11 \mathrm{~V} @ 22 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0 \ldots 500 \Omega @ 22 \mathrm{~mA} \\ & >11 \mathrm{~V} @ 22 \mathrm{~mA} \end{aligned}$
Step Response to 99\% of Full Scale	4 ms	4 ms
Intrinsically Safe Output Type	EEx ia IIB/IIC T4, (CENELEC) AEx ia IIC T4 (US), Class I, II, III Division 1 Groups A...G T4 (Canada) Class I, Zone 0, Groups IIC, IIB, IIA Class I, Division 1, Groups A, B, C, D Class II, Division 1, Groups E, F, G Class III, Division 1	EEx ia IIB/IIC T4
Intrinsically Safe Output Characteristics	$\begin{aligned} & \text { Ch } 0 \ldots 7 \\ & \text { Terminals: } 0 \ldots 1 ; 4 \ldots 5 ; 8 \ldots 9 ; 12 \ldots 13 ; 17 \ldots 18 ; 21 \ldots 22 ; 25 \ldots 26 ; 29 \ldots 30 \\ & \text { Uo } \leq 21 V \\ & \text { Io } \leq 100 \mathrm{~mA} \\ & \text { Po } \leq 520 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \text { Ch } 0 \ldots 7 \\ & \text { Terminals: } 0 \ldots 1 ; 4 \ldots 5 ; 8 \ldots 9 ; 12 \ldots 13 ; 17 \ldots 18 ; 21 \ldots 22 ; 25 \ldots 26 ; 29 \ldots 30 \\ & \text { Uo } \leq 21.6 \mathrm{~V} \\ & \text { Io } \leq 92 \mathrm{~mA} \\ & \text { Po } \leq 500 \mathrm{~mW} \end{aligned}$
Noxious Gas Exposure	Tested to severity level G3, ISA-S71.04-1985	Tested to severity level G3, ISA-S71.04-1985
FLEX Ex Power Consumption (W) at 24 V	6.3	6.1
Power Dissipation	5.4 W	6.1 W
Dimensions (HxWxD), Metric	$46 \times 94 \times 75 \mathrm{~mm}$	$46 \times 94 \times 75 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.95$ in	$1.8 \times 3.7 \times 2.95$ in
Weight, Metric	0.2 kg	0.2 kg
Thermal Dissipation, Max.	18.4 BTU/hr	20.8 BTU/hr

1797-0E8 and -OE8H Output Voltage/Current Capability

Counter I/O Module

Ideal for applications requiring rotational control, the FLEX Ex counter is essentially a tachometer with the capability of reporting frequency, acceleration, and direction. Outputs are activated by alarms. Input devices range from magnetic pickup to flowmeters, to incremental encoders to proximity detectors.

This intelligent $\mathrm{I} / 0$ module is designed to perform high-speed frequency algorithms. The module provides two frequency inputs, two gate inputs, and two outputs. The frequency inputs are capable of accepting frequencies up to 32 KHz . The module accepts and returns binary data.

The counter measures frequency over a user-specified time interval. A frequency calculation can start before the time interval clock is synchronized with the frequency input to count over a user-selected sampling time or a user-defined number of frequency input pulses. All power for input devices $(24 \mathrm{~V} \mathrm{dc})$ is supplied by the module.

1797-IJ2 2 Input Frequency Counter Module

- Software configurable frequency operating mode, with independent selections per frequency input
- Frequency inputs, two gate inputs, and two outputs
- Functional data: four selectable ranges: $50 \mathrm{mV} ; 500 \mathrm{mV}$ (magnetic pickup); flowmeter; and NAMUR
- Provides IS power to drive up to two NAMUR and two flowmeter frequency inputs and/or contact switches and NAMUR gate inputs
- NAMUR lead breakage indication for any lead, signal to the backplane and LED (per channel) blinking red for fault
- NAMUR lead breakage defeat on per channel basis via module data table (NAMUR inputs only)
- Frequency count range up to 32 kHz
- Calculate frequency on time interval or input count
- Programmable scaling
- Acceleration value calculated
- Maximum frequency or acceleration alarms
- All channels updated to the backplane every $\leq 4 \mathrm{~ms}$ (according to sampling time)

	1797-IJ2
Number of Inputs	2
Flowmeter Input Signal Threshold	3 V or 6V selectable
Flowmeter Input Voltage Available	> 15 V @ 20 mA
Magnetic Pickup Input Signal	50 mV or 500 mV , selectable
Processing Time	$\leq 4 \mathrm{~ms}$
Input Frequency Range	1.0...32,767 Hz
Frequency Resolution, Min.	Sampling Time - Accuracy $2 \mathrm{~ms}-0.043 \%$ 4 ms - 0.033% 5 ms - 0.031% 10 ms - 0.027% 20 ms - 0.025\% 50 ms - 0.023\% 100 ms - 0.023% 200 ms - 0.023% 500 ms - 0.023% 1000 ms - 0.023%
Frequency Input, Characteristics	Magnetic pickup: $50 \mathrm{mV}, 500 \mathrm{mV}$ NAMUR: $8 \mathrm{~V}, 8 \mathrm{~mA}$ Flowmeter: low $\geq 3 \mathrm{~V}$, high $\leq 6 \mathrm{~V}$
Impedance, Frequency Input	$>5 \mathrm{k} \Omega$ magnetic pickup $>10 \mathrm{k} \Omega$ flowmeter
Intrinsically Safe Input Type	EEx ia IIB/IIC T4, AEx ia IIC T4, Class I, II, III Division 1 Groups A...G T4
Intrinsically Safe Input Characteristics	DIN19234 (NAMUR)
Number of Outputs	2
Noxious Gas Exposure	Tested to severity level G3, ISA-S71.04-1985
FLEX Ex Power Consumption (W) at 24 V	4.25
Power Dissipation	4.25 W
Dimensions (HxWxD), Metric	$46 \times 94 \times 75 \mathrm{~mm}$
Dimensions (HxWxD), Imperial	$1.8 \times 3.7 \times 2.95$ in
Weight, Metric	0.2 kg
Thermal Dissipation, Max.	14.5 BTU/hr

Step 3 - Select:

- the appropriate terminal base unit for your module and system

Selecting a Terminal Base Unit

Each FLEX Ex I/O module requires a FLEX Ex terminal base unit that snaps onto the DIN Rail to the right of the I/O adapter. The terminal bases provide terminal connection points for I/O wiring and plug together to form the backplane. They are available with screw and spring terminations.

Cat. No.	Number of Terminals	Wire Size	Dimensions (HxWxD), Metric	Dimensions (HxWxD), Imperial	Weight, Metric	Terminal Base Screw Torque, Imperial
1797-TB3		$22 \ldots 12 \text { AWG }$				$7 . . .9 \mathrm{lb} \cdot \mathrm{in}$
1797-TB3S	$\begin{aligned} & 1 \text { row of } 16 \\ & 2 \text { rows of } 18 \end{aligned}$	mm^{2}) stranded copper wire rated at $75^{\circ} \mathrm{C}$ or higher 1.2 mm (3/64 in) insulation max.	$94 \times 94 \times 69 \mathrm{~mm}$	$\begin{aligned} & 3.7 \times 3.7 \times 2.7 \\ & \text { in* } \end{aligned}$	0.2 kg	-

[^0]: ＊Recommended terminal base is in bold text

[^1]: * This number is based on the hardware of the module only. Additional errors are introduced depending on the sensor used, environment, and other factors. Contact tecnical support for more information.

[^2]: *Kit supplied with the module and contains 2 compensators

[^3]: *Includes offset, gain, non-linearity and repeatability error terms

 * Use this Conductor Category information for planning conductor routing. Refer to Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1.

